高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种米粒状Fe2O3纳米粉末的制备方法
(专利号:ZL 201410445750.X) 简介:本发明公开了一种米粒状α-Fe2O3纳米粉末的制备方法,属于纳米材料制备技术领域。该方法首先采用Fe2(SO4)3和NaOH为原材料、十六烷基三甲基溴化铵(C19H42BrN)为表面活性剂,水热法制备针状的FeOOH粉末;然后将FeOOH粉末在马弗炉中以10℃/min的升温速率从室温升到1000℃后直接冷却,即得米粒状的α-Fe2O3纳米粉末。采用该方法所制备的α-Fe2O3呈现较为均
安徽工业大学 2021-01-12
一种米粒状Fe2O3纳米粉末的制备方法
(专利号:ZL 201410445750.X) 简介:本发明公开了一种米粒状α-Fe2O3纳米粉末的制备方法,属于纳米材料制备技术领域。该方法首先采用Fe2(SO4)3和NaOH为原材料、十六烷基三甲基溴化铵(C19H42BrN)为表面活性剂,水热法制备针状的FeOOH粉末;然后将FeOOH粉末在马弗炉中以10℃/min的升温速率从室温升到1000℃后直接冷却,即得米粒状的α-Fe2O3纳米粉末。采用该方法所制备的α-Fe2O3呈现较为均
安徽工业大学 2021-01-12
一种带有硫化铝外壳的硫化铜纳米粉末材料及其制备方法
(专利号:ZL 201410557601.2) 简介:本发明公开了一种带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料及其制备方法,属于纳米材料制备技术领域。该纳米粉末材料为核壳结构,内核为CuS纳米颗粒,外壳为Al2S3层;所述CuS纳米颗粒内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将铜粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极
安徽工业大学 2021-01-12
一种带有硫化铝外壳的二硫化钨纳米粉末材料及其制备方法
(专利号:ZL 201410557604.6) 简介:本发明公开了一种带有硫化铝(Al2S3)外壳的二硫化钨(WS2)纳米粉末材料及其制备方法,属于纳米材料制备技术领域。该纳米粉末材料为核壳结构,内核为WS2纳米颗粒,外壳为Al2S3层;所述WS2内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将钨粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极材料,
安徽工业大学 2021-01-12
一种带有硫化铝外壳的二硫化钼纳米粉末材料及其制备方法
(专利号:ZL 201410557617.3) 简介:本发明公开了一种带有硫化铝(Al2S3)外壳的二硫化钼(MoS2)纳米粉末材料及其制备方法,属于纳米材料制备技术领域。该纳米粉末材料为核壳结构,内核为MoS2纳米颗粒,外壳为Al2S3层;所述MoS2内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将钼粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极
安徽工业大学 2021-01-12
一种金属镍纳米粉的制备方法
本发明提供了一种金属镍纳米粉的制备方法,属于纳米材料制备技术领域。该制备方法利用比镍金属性活泼的金属铝粉在常温常压下和无机镍盐混合,将无机镍盐与保护剂一起研磨后静置一定时间,通过金属间置换反应将镍离子置换为金属镍纳米粉体。所用的制备方法为化学还原法,包括还原、洗涤、干燥等步骤。该制备方法具有产物纯净、易分离、不易氧化等特点,利于工业化生产。
安徽工业大学 2021-04-14
高白度抗静电纳米粉体
        研发团队针对高性能、抗静电热控涂层材料开展自主科研攻关,研发出具有自主知识产权的白色氧化锌导电粉体,与相关企业合作建立了100Kg级导电粉体中试生产线,完成了粉体批次稳定性验证,突破了批量制备导电粉体稳定性差的瓶颈,形成了一套高性能白色氧化物导电粉体的标准生产工艺。产品技术指标经权威检测机构检验达到或超过进口产品水平,并已通过国家航天领域应用验证。同时,产品原料及生产成本远低于进口产品,有望在我国民用市场普及。产品可应用于汽车、电子、纺织、橡胶和化工等领域的防静电、节能、电磁屏蔽等,如轮胎橡胶添加剂、红外反射涂层、防静电涂层等,市场前景广阔。         意向开展成果转化的前提条件:中试放大及产业化工艺开发资金支持
东北师范大学 2025-05-16
碲化铅薄膜和纳米粉体的同步制备方法
该项目为制备碲化铅薄膜与纳米颗粒的新工艺。目前,PbTe薄膜通常采用真空蒸镀、 激光闪蒸、磁控溅射等物理方法制备,这些方法采用昂贵的镀膜设备,成本较高;电化 学方法沉积PbTe薄膜成本相对较低,但缺点在于必须使用导电基片,适用范围较窄。PbTe 纳米颗粒大多采用水热法或溶剂热法、电化学法、乳液法等方法合成,这些方法在合成 过程中或者涉及了高压设备,或者采用了复杂的仪器和涉及冗长的工艺,或者由于引入 大量有机物给后处理及环境保护带来难题。 本项目提出以碱性水溶液作为溶剂,以成本低廉的含铅无机盐和碲化物或亚碲酸盐 作为反应物,在常压、室温至 50o C 同步合成 PbTe 薄膜和纳米颗粒,制备的薄膜平整致 密且对基片无特殊要求,纳米颗粒尺度均一且可随温度调节。与其他现有的 PbTe 薄膜 与纳米粉体制备方法相比,该方法简单易行,性价比高,几乎无能耗,反应介质为容易 净化处理的水溶液,利于环保。 
同济大学 2021-04-11
碲化铅薄膜和纳米粉体的同步制备方法
本发明属于碲化铅(PbTe)薄膜和纳米粉体的制备方法领域。本发明公开了一种 PbTe 薄膜和纳米粉体的低温水溶液同步合成方法,该方法以含铅的无机盐与二氧化碲或亚碲 酸钠为原料,以硼氢化钾或硼氢化钠为还原剂,在室温至 50 o C 碱性水溶液下同时合成 PbTe 薄膜和纳米粉末。本发明首次在低于 100 o C 且常压下合成 PbTe 薄膜与纳米粉体, 制备的薄膜平整、致密、均匀;粉末产物粒径小,粒度分布均匀,并可通过控制反应温 度来控制粒径大小。整个工艺使用的原料便宜易得,工艺简单,容易实现规模化生产, 同时反应过程中避免使用有机溶剂,有利于环保。合成的 PbTe 薄膜和纳米粉体可广泛 应用于热电器件、太阳能电池、荧光器件、红外光学元件、红外薄膜器件和半导体探测 器等,应用前景广阔。
同济大学 2021-04-11
一种硼化铌纳米粉体的制备方法
(专利号:ZL 201410219065.5) 简介:本发明公开了一种硼化铌纳米粉体的制备方法,属于陶瓷粉体制备技术领域。该方法首先在熔融盐环境中以单质硼还原五氧化二铌,然后通过用热水浸润溶解熔盐及反应产生的三氧化二硼得到纳米硼化铌粉体。本发明具有制备工艺简单,成本低廉、合成温度低(800~1000℃),合成时间短(1~4h),合成粉体纯度高,粒径小等特点。本发明所得到的硼化铌纳米粉体可用于制备超高温陶瓷、耐磨材料和超导材料。
安徽工业大学 2021-01-12
1 2 3 4 5 6
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1