高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多肽药物合成工艺
多肽药物研发具有广阔的研究空间和市场应用前景。2015 年全球多肽药物市场为 175 亿美元,据预测,2015-2025 年年增长率为10.3%,到 2025 年全球多肽药物市场将增至 469 亿美元。随着多肽药物价格的平民化、蛋白相互作用新靶点以及替代传统注射给药的新型给药技术迅猛发展,多肽药物的临床应用范围将进一步得以拓展。然而,多肽药物工业化生产中存在合成步骤繁琐、成本高等一系列技术问题,导致药品价格昂贵,大大增加了医疗负担,严重影响了这些多肽新药投放市场的速度。而我国多肽药物产业与欧美相比还
兰州大学 2021-04-14
新型凝乳酶药物
复方凝乳酶胶囊被广泛用于治疗小儿消化不良、吐奶等消化道疾 病,这类药物几乎无副作用,但是复方凝乳酶胶囊存在着蛋白水解谱 窄、疗效慢,适应症少的缺点。前期,本课题组在青藏高原发现了一 种新型的、对 α 酪蛋白、β 酪蛋白、γ 酪蛋白都具有较强水解活性的 凝乳酶 YS-1,该凝乳酶在物化特性上与传统复方凝乳酶胶囊中的小 牛皱胃凝乳酶较为类似,但蛋白水解谱广,可用于替换小牛皱胃凝乳 酶,提高传统复方凝乳酶胶囊功效、扩大其适应症,尤其在婴儿促消 化、止吐奶方
兰州大学 2021-04-14
Janus 药物共轭体
目前肿瘤化疗仍是大多数癌症患者不可缺少的治疗方法,但是化疗药物往往缺乏选择性,而且肿瘤细胞容易产生多药耐药性,严重影响化疗的效果。因此,研究可逆转肿瘤多药耐药性的功能性药物输送系统在提高化疗药物药效、降低毒副作用等方面将具有广阔的应用前景。纳米药物载体,如脂质体封装的抗癌药物在临床前和临床实验中已被证实能够通过降低毒性和增强疗效来提高治疗指数。然而,传统脂质体存在载药量低(一般<10%)、稳定性差、药物容易泄漏等问题,导致治疗效果不理想,并且容易引发机体的毒副作用。
北京大学 2021-04-11
放射性药物
放射性药物是可用于诊断或治疗目的的药物,由放射性同位素与有机分子键合组成。有机分子将放射性同位素传递至特定的器官、组织或细胞。 ​ 根据特性选择放射性同位素发射穿透伽马射线的放射性同位素用于诊断(成像),发出的辐射脱离身体后被特定仪器(SPECT / PET相机)检测到。通常,用于成像的同位素产生的辐射在1天后通过放射性衰变和正常的身体排泄完全消除。最常见的用于成像的同位素是:99mTc、I123、I131、Tl201、In111和F18。 ​ 发射短程粒子(α或β)的放射性同位素用于治疗,因为它们能够在非常短的距离内失去所有能量,因此产生大量局部伤害(例如细胞破坏)。该特性用于治疗目的:破坏癌细胞,骨癌或关节炎的姑息治疗中减缓疼痛。这类同位素在体内的停留时间比成像同位素更长;用来提高治疗效率,但仍然限制在几天内。最常见的治疗同位素是:I131、Y90、Rh188和Lu177。 ​ 放射性药物的工作原理是:基于使用分子“出租车”,将受控剂量的放射性活度特异性地传递至目标患病组织(通常是癌细胞),以便根据所用放射性核素的类型可视化(诊断)或治愈(治疗)组织。放射性药物通常包含负责将放射性核素引导至目标组织的生物载体(抗体、肽等)。双功能螯合剂牢固地抓住放射性核素并确保与生物载体之间的牢固结合。
北京先通国际医药科技股份有限公司 2022-02-25
通过改善缺氧微环境提高 PD-1 抗体疗效的靶向纳米抗癌药物的研发
针对肿瘤缺氧所致PD-1抗体不敏感,本项目利用白蛋白及ROS响应链接子将PD-1抗体与富氧血红蛋白(Hb)及ATO包裹成纳米颗粒。 一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 张琰 第二临床医学院/临床医学 2019.9/2024.6 梁洛绮 第一临床医学院/临床医学 2018.9/2023.6 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 侯鹏 第一临床医学院 副主任/教授 肿瘤生物学 杨琪 第一临床医学院 副主任/副教授 肿瘤生物学 四、项目简介 目前,尽管晚期肿瘤免疫治疗取得巨大突破,仍有大量患者对PD-1抗体不敏感。主要原因是实体肿瘤灌注不良,缺氧、酸化,抑制免疫。阿托伐醌(ATO)为线粒体Complex III抑制剂,能有效降低组织氧耗改善缺氧,但生物利用率低毒性大,应用受限。针对肿瘤缺氧所致PD-1抗体不敏感,本项目利用白蛋白及ROS响应链接子将PD-1抗体与富氧血红蛋白(Hb)及ATO包裹成纳米颗粒。研究结果证实该颗粒能肿瘤局部富集,链接子遇肿瘤微环境高含量ROS解离释放Hb 、ATO及PD-1抗体,瘤细胞对ATO的利用提高,氧耗降低。此外,Hb氧递送实现多途径改善缺氧,显著提高PD-1抗体疗效,具有潜在医学转化价值。
西安交通大学 2022-08-10
手性 2,4-二取代-噻唑酮类化合物及其制备和在制备抗癌 药物中的应用
手性药物是由具有药理活性的手性化合物组成,它在人体内通过与生物大分子间相互手性匹配和分子识别而发挥治疗作用。虽然对应异构体药物在体外的物理化学性质基本上相同,但是,由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白和核酸大分子等,它们对与其结合的药物分子的空间立体构型有一定的要求,因此,对映异构体药物在体内往往呈现很大的药效学、代谢动力学等方面的差异。在二十世纪末,随着人们对对映异构体药物的研究与认识不断深入,FDA 等药政部门于 1992 年开始把对应异构体药物当做混合物加以审批,
兰州大学 2021-04-14
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
TNFSF15蛋白在制备治疗黑色素瘤药物中的用途
本发明涉及TNFSF15蛋白在制备治疗黑色素瘤药物中的用途,本发明发现TNFSF15不但可以抑制内皮细胞生长,诱导其凋亡,还可以抑制小鼠黑色素瘤细胞B16的生长和迁移,诱导细胞凋亡。本发明发现应用TNFSF15联合化疗药物治疗黑色素瘤时,TNFSF15不但可以通过抑制肿瘤血管的生成来抑制肿瘤的生成,而且可以通过诱导黑色素瘤细胞凋亡,增强化疗药物对于黑色素瘤细胞的杀伤作用。最后,我们发现TNFSF15在与常用于治疗黑色素瘤的化疗药物顺铂的联合应用时,可以增强顺铂治疗黑色素瘤的效果。
南开大学 2021-04-10
人参二醇皂苷组分在制备防治皮炎和疤痕药物中的用途
本发明提供一种人参二醇皂苷组分在制备防治皮炎或疤痕药物及保健美容品中的应用,主要成分为人参皂苷Rb1、Rb2、Rb3、Rc和Rd。所述药物或化妆品为人参二醇皂苷组分为活性成分单独或与其它药物一起,与药学上或化妆品可接受的载体组成的药物或化妆品。利用人参根茎药材、西洋参根茎药材、人参茎叶药材、西洋参茎叶药材以及它们的总提取物或总皂苷等原材料,通过大孔吸附树脂和十八烷基硅烷键合硅胶柱层析相结合的色谱分离纯化等方法制备。本发明可在促进组织再生修复的同时防止疤痕的形成,与糖皮质激素相比,整体调节细胞免疫、停药后药效稳定,具有显著的药效优势;本发明的产品高度安全。人参二醇皂苷结构式为:。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 19 20 21
  • ...
  • 361 362 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1