高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
分子筛膜溶媒回收技术
分子筛膜渗透汽化脱水技术是一种新型的膜分离技术,通过膜一侧引入含水有机溶剂,而另一侧抽真空的方式,能够有效实现溶剂脱水,获得高纯溶剂产品。与传统精馏、吸附等技术相比,该技术可节约能耗50%以上,收率达99%。除此之外,该技术操作方便、过程易于控制并且环境友好,无废弃物排放。
南京工业大学 2021-01-12
氢气纯化膜材料与相关设备
钯膜具有超强氢分离能力且操作简单,已被广泛用于氢气与氢同位素的纯化。为克服传统轧制型钯膜所存在的贵金属消耗多、工艺复杂、能耗高、强度差等缺点,自主研发了负载型管式钯膜,膜厚度仅5μm左右,单位膜面积的高纯氢产量提高了一个数量级。负载型钯膜具有更高膜强度,安装和操作十分方便。除氢气纯化之外,钯膜还可以用于氢同位素的分离与纯化。基于高性能钯膜材料,我们开发了各种氢气纯化器,并将纯化器与电解氢气发生器相结合开发了高纯氢发生器,拥有自主知识产权。
南京工业大学 2021-01-12
膜法乳酸清洁生产工艺
目前普遍采用的乳酸生产工艺中存在污染大、排放多的问题。理论上每生产1吨乳酸,消耗硫酸0.54吨,碳酸钙0.56吨,排放废渣硫酸钙0.76吨、CO20.24吨,废水30吨。本工艺采用新型结构陶瓷膜和双极膜电渗析耦合技术对乳酸生产进行技术革新,从源头对传统乳酸生产过程进行改革,从而实现节水减排。
南京工业大学 2021-01-12
耐溶剂型中空纤维膜
本项目选择化学稳定性强的聚合物制造中空纤维膜底膜,通过合理的铸膜液配方与纺丝工艺设计,使膜丝呈完整非对称性结构,既具有良好的分离精度,又有较大的渗透通量。进一步地,通过特殊的涂覆工艺,将PDMS或类似的耐溶剂物质涂覆到中空纤维底膜的孔壁上,最终形成耐溶剂效果优越的中空纤维复合膜。在进行组件封装时,也选用耐溶剂类型的胶水浇铸组件,确保产品能长期应用于有机溶剂体系的除杂净化或溶剂回收。
南京工业大学 2021-01-12
进口蓝膜平板集热器
平板太阳能集热器是让阳光透过盖板照射在表面涂有高太阳能吸收率涂层的吸热板上,吸热板吸收太阳能辐射能量后温度升高,将热量传递给集热器内介质,使介质温度升高,作为热载体输出有用能量。
山东龙普太阳能股份有限公司 2022-02-25
杭州艾特力纳米新材料科技有限公司
杭州艾特力纳米新材料科技有限公司 2025-02-19
东莞市惠和永晟纳米科技有限公司
东莞市惠和永晟纳米科技有限公司是是一家专注于纳米功能材料及相关产品研发、销售的高新技术企业,公司总部位于广东省东莞市松山湖园区晨夕路1号1栋1203室。作为广东惠和-惠尔特集团的连锁销售公司,公司专注于硅溶胶的研发、生产与销售,致力于向全球合作伙伴提供高品质硅溶胶及延伸产品的定制化解决方案。截至目前,东莞市惠和永晟纳米科技有限公司已经开发出有40多个硅溶胶品类产品作为日常产销。此外还还包含抛光材料等抛光用原料,广泛应用于半导体、光学器件等领域的加工制造。​​公司将继续秉承“创新、务实、诚信、共赢”的经营理念,为客户提供更优质的产品和服务。
东莞市惠和永晟纳米科技有限公司 2025-03-26
高效换热装备及其耐腐蚀石墨烯复合涂层
市场背景1:根据中国机械工业联合会统计,基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。预计 2010 年至 2020 年期间,我国换热器产业将保持年均 10-15%左右的增长速度,2015 年,我国换热器产业规模已突破 880 亿元,到 2020 年我国换热器产业规模有望达到1500亿元。 市场背景2:2016年国务院印发《“十三五”国家战略性新兴产业发展规划》,“突破石墨烯产业化应用技术”被写入规划。2017年1月《新材料产业发展指南》正式公布,石墨烯成为新材料产业发展的先导性产业。据前瞻研究院数据显示,2017年我国防腐涂料(常规防腐涂料和重防腐涂料)全年产量达到561万吨,占涂料总产量的27%左右。2013年以来,涂料产量年均增长率在5.5%左右,而我国防腐涂料达到12%左右,是增长最快的涂料品种之一;2018年防腐涂料总产量或达到600万吨以上,2020年总产量可突破700万吨。
同济大学 2021-02-01
高效换热装备及其耐腐蚀石墨烯复合涂层
项目成果/简介:市场背景1:根据中国机械工业联合会统计,基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。预计 2010 年至 2020 年期间,我国换热器产业将保持年均 10-15%左右的增长速度,2015 年,我国换热器产业规模已突破 880 亿元,到 2020 年我国换热器产业规模有望达到1500亿元。 市场背景2:2016年国务院印发《“十三五”国家战略性新兴产业发展规划》,“突破石墨烯产业化应用技术”被写入规划。2017年1月《新材料产业发展指南》正式公布,石墨烯成为新材料产业发展的先导性产业。据前瞻研究院数据显示,2017年我国防腐涂料(常规防腐涂料和重防腐涂料)全年产量达到561万吨,占涂料总产量的27%左右。2013年以来,涂料产量年均增长率在5.5%左右,而我国防腐涂料达到12%左右,是增长最快的涂料品种之一;2018年防腐涂料总产量或达到600万吨以上,2020年总产量可突破700万吨。应用范围:目前国内外水蒸气空气预热器基本都是翅片管式,节能效果有待提高; 目前国内外成熟的蒸发式冷凝器基本都是管状或椭圆状,紧凑度不高,单位面积热负荷有待提高,特别针对化工产品如甲醇汽冷凝,要求系统压降低和尾气回收等指标,难以达到; 目前国内外烟气空气预热器基本采用管式,或回转式,管式占地面积达,换热系数不高,回转式漏风严重并且维修成本较高; 目前国内外解决金属表面腐蚀问题,基本采用搪瓷涂层,但搪瓷涂层导热系数低,不到1 W/(m·k)左右,而且搪瓷由于应力及金属与搪瓷线膨胀系数不一致,易导致崩瓷现象。项目阶段:批量生产效益分析:1)新型板式水蒸气空气预热器。与翅片管相比,节约水蒸汽15-30%,该项目目前属产业化阶段; 2)新型中间排液板式蒸发式冷凝器。与普通蒸发式冷凝器相比,节电节水30%,系统压降降低约0.1MPa,该项目目前属产业化阶段; 3)新型板式空气预热器。燃煤、燃气及燃油锅炉空预器,节能减排效果明显,该项目目前属产业化阶段; 4)耐腐蚀耐磨超导热疏水性石墨烯复合涂层。解决各领域换热设备表面的腐蚀问题,导热问题及结垢问题,节能减排效果明显。该项目目前属产业化阶段。
同济大学 2021-04-10
铝合金微弧氧化复合涂层耐海水腐蚀技术
一、 项目简介     将铝合金作为阳极置于电解液中,施加电压对其进行微弧氧化,通电后合金表面通过微等离子体放电,在非法拉第区进行复杂的热化学、等离子化学和电化学过程,原位生成一层很薄的均匀绝缘氧化陶瓷层。该技术工艺简单、处理效率高、成本低、无污染,获得的陶瓷膜层具有很高的耐腐蚀、耐磨损、耐高温的特点。对微弧氧化的工艺参数进行调整,可以获得性能优良的耐海水腐蚀陶瓷膜,其耐海水腐蚀性能是纯铝的4倍。微弧氧化陶瓷膜耐海水腐蚀性能大大提高,对其在海水中的腐蚀机理进行分析,主要影响因素为陶瓷膜的厚度和陶瓷膜在生产过程中生的裂纹和孔洞,因此需要对其进行电沉积封孔,弥补这些缺陷。电沉积封孔后,陶瓷膜孔隙率大大降低,膜厚增加,复合涂层的耐腐蚀性能进一步提高,是微弧氧化陶瓷膜的2倍,是纯铝的8倍。     当前我国正在积极的发展海洋产业,耐海水腐蚀结构材料将会获得越来越多的应用,因此耐海水腐蚀复合涂层可以大大的提高材料的寿命,从节能和环保两个方面,可以获得很好的经济效益和社会效益。二、 项目技术成熟程度     微弧氧化复合涂层技术在实验室条件下,生产的可重复性和稳定性非常好,在实验室条件下,可以获得100cm2的复合涂层,其耐腐蚀性能稳定,是纯铝材料的8倍。三、 技术指标     微弧氧化陶瓷膜厚度20-40μm,电沉积膜层厚度15μm,耐海水腐蚀性能是海水的8倍;四、 市场前景     船舶、海上石油平台、海水养殖、海水制盐等产业中需要大量的结构材料,通过微弧氧化和电沉积复合技术,在金属表面生成一种复合涂层,其耐腐蚀性能是铝金属的8倍,从节能和环保两个方面,都具有很重要的意义。五、 规模与投资需求     投资规模1000 万元,其中厂房3000平米,电力2500千瓦。     主要设备有大功率微弧氧化电源,清洗池、氧化池、恒温冷却设备、天车,机加工等设备。六、 生产设备微弧氧化生产线。七、 效益分析按每年生产30万平米计算,产值3000万元,可获利约1000万。八、 合作方式面谈。九、 项目具体联系人及联系方式项目负责人:曹晓明,电话:13902060727,联系人:李世杰,电话:60208474  邮箱:caoxiaoming@hebut.edu.cn 。十、 附件:成果图片图1 封孔前后试样浸泡海水45天后的腐蚀对比图a. 微弧氧化试样浸泡海水前;    b. 微弧氧化试样海水腐蚀后;c. 微弧氧化+封闭处理试样浸泡海水前; d. 微弧氧化+封闭处理试样海水腐蚀后图2 不同试样在质量分数为5%NaCl溶液中的动电位极化曲线
河北工业大学 2021-04-11
首页 上一页 1 2
  • ...
  • 18 19 20
  • ...
  • 138 139 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1