高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
WC颗粒增强45钢基复合合金耐磨板
WC颗粒增强45钢基复合合金耐磨板是通过将45钢水浇注到涂覆有WC粉末颗粒涂层的铸型中借助于高温钢水的铸渗能力使钢水填充在WC粉末颗粒的间隙中而形成的一种WC颗粒增强钢基表面复合材料。由于复合合金耐磨板是通过钢水渗入到WC颗粒粉末的间隙中形成的,所以,合金层与基体之间与传统的通过堆焊的方式形成的合金层不同的是两者之间呈冶金结合。       WC颗粒增强45钢基复合合金耐磨板中WC颗粒在整个合金层内分布均匀,并且,合金层中W
江苏大学 2021-04-14
钨颗粒增强非晶基复合材料制备技术
本技术利用微喷射粘结3D打印技术将钨粉和非晶合金粉末制成预压坯,将预压坯进行加热抽真空,采用热等静压进行热压成形,制备出钨颗粒体积分数高、非晶合金基体为完全非晶态结构且力学性能好的复合材料。 一、项目分类 关键核心技术突破 二、成果简介 非晶合金因其独特的非晶态结构,具有明显优于传统晶态合金的力学、物理和化学性能,如高强度,良好的耐磨性和耐腐蚀性等性能,但是非晶合金最大的的缺陷是缺乏宏观室温塑性,仅表现出极小的塑性变形能力。在非晶合金中添加晶体钨,既能增加材料密度,也可以在非晶基复合材料的塑性变形过程中诱发非晶基体中多剪切带的萌生和扩展,保证相应的非晶基复合材料具有高强度、剪切“自锐性”等特性,同时又增加塑性与韧性,使其应用范围更加广泛。粉末冶金可以突破尺寸和形状限制,相比传统制备方法具有众多有益效果,但是金属钨与非晶合金的密度差异显著,通过直接球磨混粉的方式很难将两种粉末混合均匀。 本技术利用微喷射粘结3D打印技术将钨粉和非晶合金粉末制成预压坯,将预压坯进行加热抽真空,采用热等静压进行热压成形,制备出钨颗粒体积分数高、非晶合金基体为完全非晶态结构且力学性能好的复合材料。项目旨在得到一种大尺寸、外加高含量且能均匀分布的小颗粒韧性相非晶基复合材料的制备方法。对于制备粉末密度差异大的其他复合材料同样具有重要的指导意义。
华中科技大学 2022-07-26
多组分颗粒体系床内分级流化反应器
本实用新型涉及化工机械领域,提供了一种多组分颗粒体系床内分级流化反应器,包括设置有反应腔的床体,所述床体的底部设置有进风管,进风管上方设置有布风板,布风板上方的床体侧壁上设置有与反应腔相通的进料通道;所述反应腔内部设置有隔离器,所述隔离器上下敞口,所述隔离器的下端覆盖布风板的风孔且与布风板之间设置有循环通道;隔离器的侧壁与床体的侧壁之间设置有循环间隙,所述循环间隙处的床体侧壁上设置有二次进风结构,所述二次进风结构设置有向上的上出风孔;所述隔离器上方的床体上设置有出料口。本装置,物料在床内循环,缩短了循环周期,避免了物料和热能的耗损,有利于节约成本,提高时空产率。
四川大学 2017-12-28
两相流固相颗粒电容在线计量技术
根据两相流中固相或者液相介电常数和气相的差异,实现介质浓度的测量,通过相关法获取流动速度,从而实现固相或者液相流量的测量。经过不断的技术改进,目前该技术可以实现超低浓度下流量的非接触式测量。 两相流固相颗粒电容在线计量技术可以实现超低浓度下两相流的非接触式流量测量。实现超大管径(2米)下的非接触式计量,有效扩大了该技术的应用范围(从1毫米到数米),基本能满足所有常规尺度下的应用。大大改善两相流计量技术无法满足工业需求的问题,推动相关企业的生产由粗放型向节约型转变,对企业的节能减排也起到了至关重要的作用,为企业创造社会和经济效益。
南京工业大学 2021-01-12
MFR-20型台式颗粒制样机( MFR制样机)
产品详细介绍MFR-20型台式颗粒制样机( MFR制样机)关键词: 颗粒制样机,MFR制样机,快速取样      MFR-20型台式颗粒制样机又叫MFR制作快速用在熔指仪上的制样机。也叫MFR制样机用于从材料上直接取颗粒样品下来,做实验用,是少量快速制样的好帮手,可用来来料检测。产品成形后,材料分析。产品配方分析,直径可作到。3MM 4MM.5MM 6MM,别的直径可以订做,是科研机构和各大学院及各质检院的快速取样的重要装备和首选仪器。一、主要技术参数:1、动力类型:电动2、主电机功率:0.37(kw)3、公称压力:20(kn)4、喉口深度:65(mm)5、滑块行程:40(mm)6、控制形式:人工7、模柄孔尺寸:20(φmm*mm)8、布局形式:立式9、适用行业:通用10、作用对象材质:金属 和非金属11、产品类型:全新12、冲样尺寸:2MM-10MM13、冲样厚度:可达5CM14、冲样刀具:可换15、冲样可度:可调16、设备整体:铸造17、冲击速度:200/分18、冲击频率:连续19、电压:220V20、设备重量:80KG
北京圆通科技地学仪器研究所 2021-08-23
一种亚纳米厚度的纳米孔传感器
本发明公开了一种亚纳米厚度的纳米孔传感器。第二电泳电极或微泵、第二储藏室、第二微纳米分离通道、基板、第一绝缘层、亚纳米功能层、第一微纳米分离通道、第一储藏室、第一电泳电极或微泵顺次放置,亚纳米功能层的中心设有纳米孔,第一绝缘层的中心设有第一绝缘层开孔,基板的中心设有基板开口,第一微纳米分离通道中部设有测量离子电流的第一电极,第二微纳米分离通道的中部设有测量离子电流的第二电极。本发明解决了将亚纳米功能层集成于纳米孔的技术难点,其制备亚纳米功能层的方法简单;解决了DNA或RNA碱基穿越纳米孔时由于碱基可能存在的不同取向而导致对碱基与亚纳米功能层的相互作用的影响。
浙江大学 2021-04-11
自复位金属耗能拉索
本发明公开了一种自复位金属耗能拉索,包括复位耗能单元、通过连接单元与所述复位耗能单元连接的拉索筋材,复位耗能单元包括外槽、设置在所述外槽上端开口中的轴心管、并排设置并固定安装在外槽中的两个倒U形软钢、由所述两个倒U形软钢夹持并与之固定连接的轴心托板、设置在外槽中并套在轴心管上的蝶形弹簧组。受拉筋穿入筋底连接头和筋顶连接头后两端被筋底锚头和筋顶锚头锚固,筋底连接头连接轴心管,筋顶连接头连接底端连接头,全拉索通过底端和顶端连接头与待加固结构相连。本发明能降低自复位耗能支撑的自重和成本、充分利用高强材料强度和提高支撑耗能稳定性。
东南大学 2021-04-11
新型金属氢燃料电池
近日,上海大学材料科学与工程学院教授汪宏斌团队开发的氢燃料电池无人机及无人小车载新型金属氢燃料电池电堆,通过进一步降低动力系统自重提高能效,使其续航时间长达2小时,满足10000平方米空间连续作业,且搭载气瓶充气只需3-5分钟,大大缩短了充电时间。 随着新冠疫情暴发,各地防疫工作迅速展开,无人机以及无人小车广泛应用于短途物资配送、消毒液喷洒、广播宣传、布控监测等多个领域。传统机型多采用锂电池系统作为动力,工作时长短且充电时间长,影响防疫工作效率。相较于锂电池动力系统,氢燃料电池具有清洁环保、能量密度高、充气快、安全等性能优势,能够满足无人机及小车长时间、高强度作业。 目前,汪宏斌团队开发的氢燃料电池无人机及小车搭载消毒装置,已经应用于地方疫情防控工作中,形成了一套以氢燃料电池作为动力系统、高续航、高效率的“陆-空”立体无人防控系统。 浙江省金华市智能制造产业园的企业复工前夕,氢燃料电池无人机在园区内进行了全面消毒作业。此次用于消毒作业的无人机搭载了1.5Kw金属电堆,配置了15kg消毒液,续航里程达2小时。除此之外,无人机还在金华市多个乡镇、街道、社区内进行了广播宣传和消毒作业,大大节省了防疫期间的用人成本,减少了人员聚集带来的疫情传播风险。点击查看原文
上海大学 2021-04-10
轻金属及其复合材料
西安交通大学 2021-04-10
量子金属态的证实
量子材料与量子相变是本世纪凝聚态物理与材料领域的研究热点。量子相变与传统的热力学相变不同,是在绝对零度下调节非热力学参量而发生的相变,相变点附近量子涨落而非热涨落起了重要作用。作为量子相变的经典范例,二维超导-绝缘体相变以及超导-金属相变研究获得了2015年美国凝聚态物理最高奖巴克利奖。在量子相变过程中,除超导基态和绝缘基态外,量子金属态是否存在于二维超导体系一直是理论与实验上争论的焦点(Rev. Mod. Phys.91, 11002 (2019))。根据安德森标度理论,由于量子干涉效应以及相位相干长度在零温下发散的特性,载流子在趋于绝对零度时会表现出局域化效应,因此理论上不存在二维量子金属基态。尽管实验上在各种二维电子体系发现了量子金属态的可能迹象,但受低临界温度的制约以及外界高频噪声的影响(Science Advances 5, 3826 (2019)),二维量子金属态的存在与否仍存在着巨大争议,是近三十年来国际学术界一直悬而未决的重要物理问题。 最近,北京大学物理学院量子材料中心王健教授、博雅博士后刘易与合作者在高温超导纳米多孔薄膜中首次完全证实了量子金属态的存在。通过调节反应离子刻蚀的时间,研究团队在高温超导钇钡铜氧(YBCO)多孔薄膜中实现了超导-量子金属-绝缘体相变。量子金属态存在的直接证据是体系的电阻随着温度降低表现出饱和特性,在高温超导体YBCO薄膜中,该电阻饱和温度高达5K,这一温度相比于传统超导体系提高了1-2个数量级,大大提升了量子金属态的稳定性和实验结果的可信度。通过高频滤波器极低温对照实验表明,是否添加滤波器对体系的电阻在低温下的饱和规律没有明显的作用,有效地排除了外界高频噪声对实验的影响,为量子金属态的存在提供了可靠的实验证据。实验还揭示了量子金属态的霍尔电阻为零欧姆,意味着量子金属态具有与超导体类似的粒子空穴对称性(particle-hole symmetry)。 此外,实验表明量子金属态在低温下满足欧姆定律且具有巨磁阻效应,这些发现也与理论上对量子金属态的预期吻合。 研究团队通过系统的极低温电输运测试发现,超导,金属与绝缘这三个量子基态都有与库珀电子对相关的h/2e周期的超导量子磁通振荡,这表明量子金属态与传统金属不同,是玻色金属态,揭示了库珀对玻色子对量子金属态的形成起到了主导作用。(注:传统金属中导电是电子,也即费米子)实验发现,对于超导态的样品,量子振荡振幅随温度的降低迅速增加而发散; 对于绝缘态的样品,振幅随温度的降低先迅速增加然后在低温下衰减; 而对于量子金属态的样品,振幅随温度的降低先迅速增加然后在低温下饱和。进一步分析揭示出振荡振幅饱和对应于相位相干长度饱和,是量子金属形成的一种可能机制。有意思的是通过调控正常态电阻仅两个数量级,量子振荡振幅从超导态样品到最绝缘的样品变化了九个数量级,这意味着多孔高温超导体系具备很好的相位相干调控性。 该工作于2019年11月14日在线发表于学术期刊《Science》上。(DOI: 10.1126/science.aax5798;https://science.sciencemag.org/content/early/2019/11/13/science.aax5798)。北京大学王健教授、布朗大学James M. Valles Jr 教授、电子科技大学熊杰教授是本文的共同通讯作者,电子科技大学博士生杨超和北京大学博士后刘易为文章共同第一作者,北京大学为第一通讯作者单位。这一工作的主要合作者还包括布朗大学Jimmy Xu教授,北京大学林熙研究员,北京师范大学刘海文研究员,清华大学姚宏教授,电子科技大学李言荣院士等。该工作得到了国家自然科学基金、国家重点研发计划、中央高校基本科研业务费、量子物质科学协同创新中心、中科院卓越创新中心、低维物理国家重点实验室开放基金、北京市自然科学基金、北京市交叉科学与技术基金、博士后科学基金等支持。 二维高温超导体系中量子玻色金属态的证实是王健研究组与合作者继量子格里菲斯奇异性发现以来(Science 350, 509 (2015)); Nature Communications 10, 3633 (2019)),在二维超导量子相变领域的又一重要突破。该工作为国际上争论了三十多年的量子金属态的存在提供了有力的证据,并为研究量子金属态提供了新思路。该工作也得到了美国科学院院士斯坦福大学Steven A. Kivelson教授的高度评价,评论文章发表在Journal Club for Condensed Matter Physics(凝聚态物理期刊俱乐部)上。Kivelson教授指出:“这一工作对量子材料的理解具有基础性的重要意义”。图一, 钇钡铜氧(YBCO)纳米多孔薄膜中的超导-量子金属-绝缘体量子相变。(A)用多孔氧化铝(AAO)模板蚀刻法制备YBCO纳米多孔薄膜的工艺示意图。(B) YBCO纳米多孔薄膜扫描电镜(SEM)图像。(C) YBCO纳米多孔薄膜的几何结构示意图。(D)不同刻蚀时间下YBCO纳米多孔薄膜的电阻对温度的依赖关系。超导态(SC)、反常金属态(AM1)、过渡态(TS)和绝缘态(INS)四种典型薄膜的电阻温度曲线用黑色表示。图二,量子金属态证据。(A)量子金属态薄膜和超导薄膜的输运曲线。其中低温下电阻的饱和行为为量子金属态的特征。(B) 量子金属态薄膜极低温输运曲线。是否采用高频滤波器并不改变量子金属态饱和电阻的特征。插图: 量子金属态薄膜的I-V曲线,符合欧姆定律,亦为量子金属态的证据。(C)典型量子金属态薄膜的霍尔电阻和纵向电阻随温度的变化图。霍尔电阻(Rxy)在低温下趋于零,而纵向电阻不为零,表现出量子金属态的特征。插图: 量子金属态薄膜不同温度下的霍尔电阻(Rxy)。(D) 量子金属态薄膜的巨磁阻效应,与理论上对量子金属态的预期相符。图三,库柏对在量子相变过程中的相干性衍变 (A)超导态、(B) 量子金属态、(C)绝缘态的磁导振荡图。 (D) 不同温度下,所有YBCO薄膜的磁导振荡的振幅。对于量子金属态薄膜,磁导振荡的振幅随温度的降低在5 K左右而饱和。而超导态薄膜磁导振荡的振幅在低温下发散,绝缘态薄膜磁导振荡的振幅随着温度降低先增加后减小。(E) 通过相位相干的近似模型,计算得到量子金属态的相位相干长度在低温下饱和。揭示了量子金属形成的一种可能机制。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 56 57 58
  • ...
  • 223 224 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1