高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
氧化石蒜碱油酸复合物纳米乳
氧化石蒜碱(Lycobetaine, LBT)又名恩其明,是由石蒜科植物Umgernia minor的叶子或Crinum asiaticum的果实中提取出的四级啡啶类生物碱。在相应的细胞学研究中,氧化石蒜碱对于Lewis肺癌,艾氏腹水癌等多种肿瘤细胞株的抑瘤作用都十分明显。但此药物的水溶液制剂生物利用度极低,体内半衰期只有30秒,影响了氧化石蒜碱本身的药效,需要大剂量多次给药。而且由于药物脂溶性太差,不适用于大部分现有载体,限制了其在临床中的使用。 本项目将纳米乳作为氧化石蒜碱的载体,设计了一种能应用于工业化大生产,生产成本低,辅料符合要求,制备工艺简单,可以提高药物在体内的循环时间以提高药物疗效的氧化石蒜碱纳米乳给药系统,并对该纳米乳的理化性质、体内药动学、组织分布、药效学和毒副作用进行了相应的研究。 本项目选择了油酸作为亲脂性离子对试剂,通过油酸与氧化石蒜碱形成离子对复合物的方式来提高药物的脂溶性,从而使其可以包裹进纳米乳中。优化了种纳米乳的处方和制备方法,成功地制备了PEG化的氧化石蒜碱油酸复合物纳米乳,即LBT-OA-PEG-NE,粒径分布于100 nm到200 nm之间。包封率为97.32 ± 2.09 %,载药量分别为6.12%和6.09%。 对LBT溶液、LBT-OA-NE和LBT-OA-PEG-NE三种制剂在Wistar大鼠体内的药物代谢情况进行了比较。通过对药时曲线的分析得出,LBT-OA-PEG-NE具有比LBT溶液、LBT-OA-NE更长的血液循环时间,而且显著延长了它的半衰期和MRT,将AUC提高了32倍。这些结果说明LBT-OA-PEG-NE在延长药物的血液循环时间上有很明显的作用。 在组织分布实验中,本文比较了LBT溶液、LBT-OA-NE和LBT-OA-PEG-NE在各个组织中的分布情况。结果显示,LBT-OA-PEG-NE显著提高了LBT在靶器官肺中的浓度,有利于增大药效。而LBT-OA-PEG-NE在肾脏中的药物浓度也比 LBT普通制剂低,有利于减少对肾脏的毒副作用。 为了检测药物的疗效,在药效学实验中选择了两种常用的肺癌模型,并考察了LBT-OA-PEG-NE和LBT原药在两种肿瘤模型中的药效作用。首先,LLC异位肿瘤荷瘤小鼠的实验结果表明LBT-OA-PEG-NE和LBT原药原药相比对LLC异位肿瘤具有更强的抑制作用,能够明显的延长荷瘤小鼠的生存期。其次,B16F10肺转移性黑色素瘤荷瘤小鼠的试验结果表明LBT-OA-PEG-NE 能够显著延长荷瘤小鼠的生存期。而且实验过程中发现LBT-OA-PEG-NE给药后没有出现注射LBT原药时出现的皮肤溃烂的现象。 最后,在毒理学研究中,LBT-OA-PEG-NE和LBT溶液均未发现骨髓抑制和肠道不良反应,说明制剂及原药均安全可靠。
四川大学 2016-04-15
高纯纳米二氧化锆
产品特点   高纯纳米二氧化锆通过等离子体气相燃烧法制备,纯度高、粒径小、分布均匀,比表面积大、表面干净,无残余杂质,松装密度低,易于分散,纳米氧化锆,硬度较大、常温下为绝缘体、而高温下则具有优良的导电性,具有抗热震性强、耐高温、化学稳定性好、材料复合性突出等特点。   产品参数 产品名称 型号 平均粒度(nm) 纯度(%) 比表面积(m2/g) 松装密度(g/cm3) 晶型 颜色 纳米二氧化锆 ZH-ZrO215N 15 99.99 65.16 0.11 单斜 白色 纳米二氧化锆 ZH-ZrO230N 30 99.99 45.68 0.35 单斜 白色 纳米二氧化锆 ZH-ZrO23Y 50 99.99 43.26 0.38 3Y 白色 纳米二氧化锆 ZH-ZrO25Y 50 99.99 43.14 0.42 5Y 白色 纳米二氧化锆 ZH-ZrO28Y 50 99.99 43.54 0.40 8Y 白色 加工定制 为客户提供定制颗粒大小和表面改性处理   产品应用   1、高纯纳米二氧化粉体烧结成的陶瓷由于其相变增韧的良好性能;在纳米复合材料研究中,将纳米二氧化锆作为弥散相对基体进行增强韧化;稳定纳米氧化锆作为一种理想的电解质已被应用于固体氧化物燃料电池中;   2、高纯纳米氧化锆具备特殊的光学特性,对紫外长波、中波及红外线反射率高达85%以上。涂层干燥后,纳米粒子紧密填充涂层之间的空隙,形成完整的空气隔热层,并且其自身低导热系数能迫使热量在涂层中的传递时间变长,使得涂层也具有较低的导热系数,从而可以提高涂层的隔热性能;   3、高纯纳米氧化锆还可以耐火材料:电子陶瓷烧支承垫板,熔化玻璃、冶金金属用耐火材料;在高技术领域的应用日益扩大;   4、高纯纳米氧化锆应用于各种油性涂料,油漆。提高耐磨性,用于功能涂层材料中有防腐、**作用,提高耐磨、耐火效果;   5、纳米氧化锆可以用在**度、高韧性耐磨制品:磨机内衬、拉丝模、热挤压模、喷嘴、阀门、滚珠、泵零件、多种滑动部件等。   包装储存   本品为充惰气塑料袋包装,密封保存于干燥、阴凉的环境中,不宜暴露空气中,防受潮发生氧化团聚,影响分散性能和使用效果;包装数量可以根据客户要求提供,分装。   技术咨询与索样   联系人:王经理(Mr.Wang)   电话:18133608898  微信:18133608898 QQ:3355407318 邮箱:sales@hfzhnano.com
安徽中航纳米技术发展有限公司 2025-11-28
由聚合物纳米中空胶囊制备绝热聚合物材料的方法
本发明公开了一种由聚合物纳米中空胶囊制备超级绝热聚合物材料的方法,该方法首先利用双亲性大分子可逆加成断裂链转移试剂制备聚合物纳米胶囊,然后制备胶囊间交联剂,最后按胶囊与胶囊间交联剂质量比2.5:1至0.8:1的比例,将胶囊间交联剂与聚合物纳米胶囊乳液混合,调节pH至3.0~6.8,于60~90oC温度下反应30min至24h,使乳液凝胶化,再通过四氢呋喃置换出纳米胶囊中的核芯石蜡,真空干燥得到聚合物纳米多孔材料;本发明制备工艺简单,孔隙率和孔径大小可以通过改变纳米胶囊乳液的固含量、醚化三聚氰胺甲醛树脂的用量以及纳米中空胶囊自身空隙率调节,并且该多孔材料相对于传统的绝热材料具有很高的力学强度。
浙江大学 2021-04-13
银包铜粉导电胶
从导电胶的重要性、技术和市场需求、国内外生产和研发的现状来看,高端导电胶是直接影响我国半导体行业能否健康发展的核心材料之一。 本项目重点探索树枝状银包铜在导电胶方面的性能与应用,为设计制造低成本高导电绿色环境友好型导电胶提供坚实可靠的研究思路和科学理论依据。 针对低成本高导电树枝状银包铜粉导电胶的开展,该项目实现既能满足电子元器件的高导电需求又具有低温快速固化、优异高温高湿稳定性以及高强度等优异性能、且比现有复合导电胶导电性能更优、稳定性更高、成本更低、机械强度更高的结
南京大学 2021-04-14
一种碱式碳酸铜载镓复合氧化物及其制备方法与应用
本发明公开了一种碱式碳酸铜载镓复合氧化物及其制备方法与应用,将含硝酸铜、硝酸镓和尿素的混合溶液进行水热反应,得到碱式碳酸铜载镓复合氧化物。本发明所提供的方法具有制备工艺简单,重复性好,方便批量合成复合氧化物催化剂的优点,且所述催化剂在电还原制备合成气过程中,具有超宽的稳定电位范围,稳定电位范围宽至‑0.6~‑1.8V,且能稳定地调节CO/H<subgt;2</subgt;比。本发明制备出碱式碳酸铜载镓复合氧化物,CO<subgt;2</subgt;电还原制备合成气,合成气效率在90%以上,该催化剂有望在电催化领域获得广泛的应用。
南京工业大学 2021-01-12
低温快速制备纳米金属间化合物涂层技术
本项目为一种低温快速制备纳米铝金属间化合物涂层技术。这种新技术利用不同材料和直径的介质球,通过机械振动使介质球在封闭的空间(渗罐)内往复运动,产生冲击,作用在欲形成涂层的金属/合金粉末颗粒和零件表面,使金属/合金粉末颗粒发生粉碎、塑性变形,并与零件表面发生粘结,在440-600℃范围内,通过粉末烧结、界面反应和零件表面原子向粘结于表面的金属/合金粉末颗粒内的扩散过程,形成纳米金属化合物涂层。例如,在440~600℃,经过15至180分钟的振动处理,可以在20钢表面制备出10~100微米厚的铝化物涂层。该涂层具有单层纳米结构,组织致密、成分均匀、没有粗大晶粒和孔洞等缺陷,具有优异的抗高温氧化性能和抗高温硫化性能。可以在各种金属和合金表面制备纳米金属间化合物涂层。还可以制备弥散各种纳米陶瓷颗粒的纳米金属间化合物涂层。在铁、钴、镍基合金表面制备出纳米金属间化合物涂层和弥散各种纳米陶瓷颗粒的纳米金属间化合物涂层。具有优异的优异的抗高温氧化性能和抗高温硫化性能。
北京科技大学 2021-04-11
碳纳米管 /聚合物复合吸波材料
碳纳米管的优越电磁波吸收性能, 在军事领域及民用领域里有潜在的 巨大用途。碳纳米管吸波材料对于国家安全、隐形作战装备研制、具有十 分重大的意义。碳纳米管 /聚合物复合吸波材料还可广泛应用于民用领域, 可用于抗静电、电磁屏蔽,减少或者消除电磁波对人体的伤害及电磁设备 的干扰。 本研究显示碳纳米管 /聚合物复合吸波材料具有优良的雷达波吸收性 能,具有广阔的市场空间和应用前景。
南昌大学 2021-04-14
循环利用磷化工副产物磷铁制备能源材料
成果描述:拥有独立的自主知识产权,采用磷铁在水溶液中电解制备高纯度FePO4,以水中的氧为产物提供氧源,可以实现原位除杂,不受磷铁的原料来源限制;采用价廉的磷铁和空气中的氧为原料,通过与锂盐和补充磷源或铁源在可控气氛下反应制备粒度和碳含量可控的LiFePO4,避开了目前合成方法中的专利技术壁垒问题,不存在知识产权纠纷,将废物循环利用与能源材料耦合起来,节能环保,从源头上降低了磷酸铁和磷酸铁锂的生产成本;所采用的原料均为大宗化工产品,磷铁副产物中的杂质可以通过反应工艺控制进行无害化处理,在原料的供应和价格方面都非常稳定;通过工艺控制和反应原料的组合,可以将反应产生的CO2等副产物循环利用,实现零排放的绿色清洁工艺;将添加剂与磷铁和锂源及补充的铁源或磷源充分混合,添加剂在后续的反应中既可以起保护作用,又能形成对磷酸铁锂颗粒的原位包覆及控制晶粒生长作用,能够极大提高正极材料的导电性能;采用的工艺路线容易控制,工艺稳定性好,容易实现大批量生产;由于本技术路线使用比较低廉的磷化工副产物磷铁和大宗化工产品,原料成本只是其他工艺原材料成本的1/3~2/3,非常具有市场竞争力;本项目前期采用全新工艺研制的磷酸铁锂材料克容量已达到或超过市售产品,1C放电容量达到120 mAh/g以上,而且成本和生产工艺有非常大的市场竞争优势。市场前景分析:本项目产品专门提供给各种电动车、电动工具、手机、笔记本电脑、蓝牙器件、UPS不间断电源、摄像机、播放器、游戏机、电动玩具、清洁器和极端气候环境下的武器装备等产品所需的锂离子电池和超级电容器电极材料,特别在电动车领域具有非常大的市场前景,主要应用领如图3所示。作为电动车电源,磷酸亚铁锂动力电池具有热稳定性好、安全性高、寿命长、倍率性能好、耐高温、绿色环保等特点,备受关注。与以往的锂离子电池正极材料LiCoO2、LiMn2O4、LiNiMO2等相比,磷酸亚铁锂的安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标,而且循环稳定性好,1C充放循环寿命达2000次。单节电池过充电压30V不燃烧、不爆炸,穿刺不爆炸。在未来地几年内,磷酸铁锂地市场需求量将达5万吨以上,尤其是在动力型电池应用方面对磷酸铁锂地需求将大幅增加。目前全球磷酸铁锂生产能力小于2000吨/年,投资磷酸铁锂项目风险小,回报快。与同类成果相比的优势分析:FePO4基本参数:纯度≥97%,粒度≤1μm,而且根据需要可以进行调控。LiFePO4基本参数:Li =~4.4%, Fe=35.4%, P=19.6%, C=2~6%。物理参数:松装密度 ≥0.5g/cm3, 振实密度 ≥1.0g/cm3, 中位粒径 ~4μm。涂片参数:LiFePO4: C : PVDF=90:3:7,极片压实密度:2.1-2.4 g/cm3。电化学性能:克容量>120mAh/g 测试条件:1C, 全电池。克容量>140mAh/g 测试条件:纽扣0.1C, 电压4.2-2.5V。 国际先进,国内领先。
四川大学 2021-04-10
铜铝双金属复合材料
项目简介铜铝双金属复合材料是一种在铝材的一面或者两面复合一层铜板带的复合材料。这种复合材料不仅具有铜材导电、导热性能好,接触电阻低,电镀容易以及大气美观等优点,而且兼具铝材的质轻、散热性能优良、经济等特点,广泛应用于电子、通讯、电器、电力、散热、汽车、建筑装饰、生活用具等领域。本成果创新采用低温液-固复合技术生产铜-铝复合材料,解决了铜与铝复合时容易形成金属间化合物,铜与铝界面结合强度低,容易出现开裂的问题;实现了铜-铝复合材料的焊接,解决了焊接接头容易出现脆性化合物的问
江苏大学 2021-04-14
江西铜业集团有限公司
江西铜业集团有限公司成立于1979年,肩负国家赋予的“摆脱我国铜工业落后面貌,振兴中国铜工业”的光荣使命。41年来,受益于国家经济持续增长,亦有赖于自身的专业与专注,已成为中国大型阴极铜生产商及品种齐全的铜加工产品供应商。 公司致力于持续发掘资源价值,恪守可持续发展承诺,满怀感恩和敬畏之心发掘矿产资源价值,追求人与自然的和谐共生。多元化的业务包括铜、金、稀土、银、铅、锌、钨、铼、碲等多品种矿业开发,以及支持矿业发展的金融、投资、贸易、物流、技术支持等增值服务体系,在中国、秘鲁、哈萨克斯坦、阿富汗等国建立了矿业基地。通过我们的创造,十多种矿产资源转化为商品并最终进入人们的日常生活。旗下江西铜业股份有限公司先后于1997年和2001年分别在香港、上海完成H股和A股上市。2008年江铜集团实现整体上市。2013年起,进入世界500强企业,2017年,集团完成公司制改革,成为国有独资公司。2019年战略并购恒邦股份,进入双上市平台企业。    
江西铜业集团有限公司 2021-11-01
首页 上一页 1 2 3 4 5 6
  • ...
  • 206 207 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1