高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
光学散射测量中粗糙纳米结构特性参数的测量方法
本发明公开了一种光学散射测量中粗糙纳米结构特性参数的测 量方法,可以对 IC 制造中所涉及纳米结构的结构参数和粗糙度特征参 数进行非接触、非破坏的测量。首先,通过仿真分析的手段,选出最 优测量配置与最优等效介质模型;其次,将上述仿真结果运用于实际 纳米结构的测量,包括:在最优测量配置下,对实际纳米结构进行光 学散射测量,获得测量光谱;运用基于最优等效介质模型的参数提取 算法,对测量光谱进行分析,获得提取参数的数值;通过提取参数与 待测参数间稳定性最佳的映射关系式对提取参数进行映射,获得待测 参数的数值。 
华中科技大学 2021-04-11
钢铁企业副产铁泥制备纳米 α-Fe2O3
该技术是用铁泥制备纳米尺度 α-Fe 2 O 3 , 首先,对铁泥进行改性,使之全部转化为Fe 2 O 3 ,经酸浸后制得到FeCl 3 ·6H 2 O,然后再进入合成与晶化过程,控制参数得到纳米 α-Fe 2 O 3 产品。 工艺路线如下: 该技术采用水热法制备 α-Fe 2 O 3 ,可有效控制反应过程,保证成核的均匀性,产品均为纳米粒子,辅加表面活性剂会合成不同形貌的纳米 α-Fe 2 O 3 。用于多种高端材料的制作原料。
北京科技大学 2021-04-13
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了 Mg 纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的 Mg 纳米线。 结果表明,改变载气流速、传输温度和沉积基底,可以控制 Mg 纳米线的长度和直径。测试结果显示,Mg 纳米线降低了脱附能垒,改善了热力学和动力学性能。实验结果显示,直径为 30-50nm 的 Mg 纳米线具有良好的可逆储放氢性能。研究成果发表在 J. Am. Chem. Soc.,J. Phys. Chem. C,J. AlloysCompds 等期刊上,授权发明专利 2 项。 
南开大学 2021-04-13
凹凸棒石矿物的棒状晶束纳米化解离
中国是凹凸棒石粘土矿的资源大国,但是由于成矿条件的苛刻,天然凹凸棒石粘土存在着一定的矿物学局限性。比如气候条件、地质环境与矿床成分的不同,都会影响凹凸棒石粘土的形成、晶体发育、元素组成等,所以,含量较高、单晶体发育良好的矿床很少,极大部分的天然凹凸棒石粘土矿物中凹凸棒石粘土的含量都低于50%,通常,在凹凸棒石粘土矿物开采之后,都要对其进行提纯处理,将其中的伴生矿物与之分离,同时,在提纯过程中减小矿物粒径,提高分散性,使包含于凹凸棒石粘土聚集体中以及晶体束中间的杂质去除,获得均匀、完整的凹凸棒石粘土粒子,以便进行工业化的应用或是进一步的纯化与改性处理。 成果亮点 针对凹凸棒石矿物资源特点,如杂质多并夹在其纤维束中,矿粒之间存在相互交叉、包覆,提纯难度较大等问题,进行系统分析,确定其组份、形貌以及粒径分布等物理性能,针对其杂质成分,研究出一种易于对其工业化提纯的综合改性方法,获得低成本的纳米级凹凸棒石材料,为凹凸棒石后续的应用创造良好的条件。
兰州大学 2021-01-12
基于纳米多孔材料的结构设计和表面修饰工程
纳米多孔金属材料由于具有独特的三维、连续多孔结构,在超级电容器、催化和传感领域有潜在的应用价值。以纳米多孔金、纳米多孔钛为基体材料,利用磁控溅射沉积、去合金法、电化学沉积等方法,在多孔结构表面沉积纳米一维和二维纳米材料如纳米氧化钛、纳米氧化锰等半导体材料以及石墨烯、石墨烯量子点、氮化碳等材料,制备出复合结构材料,以获得良好的储能、催化、传感性能。
上海理工大学 2021-01-12
丁香醛与3,4,5-三甲氧基苯甲醛绿色合成技术
丁香醛与3,4,5-三甲氧基苯甲醛是通用药物中间体,它们最主要的用途是用于合成经典抗 菌剂——甲氧苄啶,每年全球生产量达5千吨左右,中国是主产国。目前丁香醛与3,4,5-三甲氧 基苯甲醛的生产路线为对甲酚四溴化-水解制得二溴醛、二溴醛甲氧基化得丁香醛、再进行甲 基化制得3,4,5-三甲氧基苯甲醛。这条传统路线的主要缺陷是溴素的消耗极大,后续副产大量 的溴化氢,必须设立耗溴的溴代烷烃工厂。因此丁香醛与3,4,5-三甲氧基苯甲醛的生产需依赖 溴素原产地,副产衍生化过长,生产成本较高。随着中国溴素资源的枯竭逐步显现,当前丁香 醛与3,4,5-三甲氧基苯甲醛产业亟需产业升级换代,开发使用新的低溴、绿色的合成技术。这条路线的优点在于: 1. 在溴化反应制备二溴酚中,使用洁净溴化技术,无副产溴化氢,溴素消耗量最小,实现 溴素资源的循环利用,摆脱丁香醛与3,4,5-三甲氧基苯甲醛生产对溴素资源原产地的一类,并 且该步反应几乎无废水排放。 2. 在甲氧基化反应制备二甲氧基对甲酚中,使用定量甲氧基化技术,可以直接回收精甲醇 用于循环生产甲醇钠。与此同时通过回收溴化钠进行循环利用,无废水排放。 3. 在氧化反应制备丁香醛中,使用本课题组开发的高效氧化技术,安全、高产、分离简 便,仅有少量中和废水。 4. 这是一项低碳、低溴耗、循环经济、低污染的绿色洁净合成路线,生产成本较老工艺有 较大幅度下降,为产业更新升级所急需。并且该条路线可以联产中间体三甲氧基甲苯,形成合 理的产业链条。
华东理工大学 2021-04-11
气态烃非催化部分氧化制合成气关键技术及 工业应用
项目属于化学工艺和能源高效转化利用的交叉领域,先后列入国家“十一五”支撑计划项 目、中国石油化工集团公司重点攻关项目、中国石油天然气集团公司重点攻关项目。气态烃非 催化部分氧化技术可广泛应用于焦炉气、煤层气、天然气、油田气、炼厂气等气态烃化合物制 备合成气,是能源化工领域的核心技术,应用前景广阔。 项目系统研究了气态烃非催化部分氧化技术,主要创新点在于: (1) 基于转化过程为传递控制的原理,创新性地提出了新型气态烃非催化部分氧化烧嘴。 (2) 基于烧嘴与流场匹配的思想,提出了新的转化炉拱顶隔热衬里设置结构型式。 (3) 提出了气态烃非催化部分氧化新的流程组织模式、自动控制及安全联锁保护系统的理 念,形成了具有自主知识产权的气态烃非催化部分氧化制合成气成套工艺技术。该技术打破了 GE、Shell等跨国公司的垄断,主要技术经济指标国际领先。
华东理工大学 2021-04-11
氯化钠浮选药剂合成、复配及 在氯化钾生产中应用
我国氯化钾主要通过盐湖卤水盐田蒸发结晶形成光卤石矿,主要成分包括NaCl和 KCl·MgCl2·6H20,通过脱除氯化钠和氯化镁制备氯化钾产品,目前最先进的工艺是反浮选- 冷结晶工艺,其中反浮选技术是增加氯化钠晶体表面的疏水性,经过搅拌鼓入空气,氯化钠表 面的水层迅速破裂并与气泡形成富含氯化钠的泡沫层。该泡沫层通过刮板分离,实现光卤石中 的氯化钠分离,获得高质量的低钠光卤石。氯化钠浮选药剂的物化性能及加料操作方式,直接 影响氯化钾产品品位。 华东理工大学资源过程工程研究所基于浮选机理研究、浮选药剂合成与复配设计、浮选工 艺设计优化及工程放大,开发了非催化、无三废排放的氯化钠浮选原料药绿色合成工艺,工业 规模药剂产品有效成分达93%以上;研制了多元药剂复合配方,其氯化钠捕获能力达到国外复 合药剂同等水平,捕钠能力达到4500克氯化钠/克药剂以上。
华东理工大学 2021-04-11
一种芳基碳苷类化合物的合成方法
本发明属于金属催化以及药物化学应用技术领域,具体涉及芳基碳苷类化合物的合成方法。碳苷是指碳苷键的环外氧原子被碳原子所取代的一类化合物的总称,是自然界中存在非常广泛的一类含糖骨架,它广发存在于多种天然产物和药物分子中,相比于氧苷和氮苷,碳苷在生物体内具有更好的酶稳定性以及耐水解性,因此它们也成为了代替天然氧苷药物的一个重要选择。例如近年来,多家制药公司发展的一系列治疗二型糖尿病的SGLT2抑制剂,包括达格列净,卡格列净,依帕列净等。此外,碳苷在天然产物中的存在也是非常广发。早在1971年由Scheuer,P.J.教授课题组从夏威夷的软体珊瑚中分离得到天然产物海葵毒素(图1),后来在其他海洋生物中也有发现,其全合成工作在1994年由哈佛大学化学系教授Y.Kishi的研究小组完成,这是一例发现的比较早的碳苷类天然产物,也是迄今为止最为复杂的天然产物之一。此后,越来越多的含有碳苷的天然产物陆续被发现,下图列举了1990年以后具有代表性的含有C-苷的天然产物(图2)。本发明的目的在于无需提前制备芳基金属试剂,首次利用了Pd催化的碳氢键活化策略,通过AQ(或其他导向基团)导向的C(sp2)-H活化
南开大学 2021-04-10
气态烃非催化部分氧化制合成气关键技术及工业应用
项目属于化学工艺和能源高效转化利用的交叉领域,先后列入国家“十一五”支撑计划项目、中国石油化工集团公司重点攻关项目、中国石油天然气集团公司重点攻关项目。气态烃非催化部分氧化技术可广泛应用于焦炉气、煤层气、天然气、油田气、炼厂气等气态烃化合物制备合成气,是能源化工领域的核心技术,应用前景广阔。 项目系统研究了气态烃非催化部分氧化技术,主要创新点在于:(1)基于转化过程为传递控制的原理,创新性地提出了新型气态烃非催化部分氧化烧嘴。(2)基于烧嘴与流场匹配的思想,提出了新的转化炉拱顶隔热衬里设置结构型式。(3)提出了气态烃非催化部分氧化新的流程组织模式、自动控制及安全联锁保护系统的理念,形成了具有自主知识产权的气态烃非催化部分氧化制合成气成套工艺技术。该技术打破了GE、Shell等跨国公司的垄断,主要技术经济指标国际领先。
华东理工大学 2021-02-01
首页 上一页 1 2
  • ...
  • 99 100 101
  • ...
  • 157 158 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1