高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种可陶瓷化阻燃高分子复合材料及应用
本发明提供了基于聚烯烃或基于热塑性聚氨酯弹性体的可陶瓷化阻燃高分子复合材料,该复合材料按重量份计,包括如下组分:聚烯烃类树脂或热塑性聚氨酯弹性体30-40份,成瓷填料25-45份,无卤阻燃剂20-30份,协效阻燃剂 1-5份,增塑剂1-3份,抗氧剂0.5-2份,交联剂0.02-0.15份,所述成瓷填料包括低软化点玻璃粉和硅酸盐矿物填料。本发明还提供了该复合材料在电缆领域上的应用。本发明复合物可在600-1000oC范围内形成致密的陶瓷化产物,形成的陶瓷化产物具有良好的高温强度和阻燃性能,在常温下也具有良好的力学性能。
四川大学 2016-09-13
多层片式陶瓷元件内电极用导电浆料及其制备方法和应用
本发明公开了一种多层片式陶瓷元件内电极用导电浆料及其制 备方法和应用。该浆料包括 Ni-ZnO 复合粉体和有机粘合剂,其中, Ni-ZnO 复合粉体的质量百分比为 70~80%,有机粘合剂的质量百分比 为 20~30%;Ni-ZnO 复合粉体为 ZnO 包裹的 Ni 粉。该方法包括如下 步骤:制备 Ni-ZnO 复合粉体;将质量百分比为 70~80%的 Ni-ZnO 复 合粉体和质量百分比为 20~30%的有机粘合剂混合后球磨,得
华中科技大学 2021-04-14
多层片式陶瓷元件内电极用导电浆料及其制备方法和应用
本发明公开了一种多层片式陶瓷元件内电极用导电浆料及其制 备方法和应用。该浆料包括 Ni-ZnO 复合粉体和有机粘合剂,其中, Ni-ZnO 复合粉体的质量百分比为 70~80%,有机粘合剂的质量百分比 为 20~30%;Ni-ZnO 复合粉体为 ZnO 包裹的 Ni 粉。该方法包括如下 步骤:制备 Ni-ZnO 复合粉体;将质量百分比为 70~80%的 Ni-ZnO 复 合粉体和质量百分比为 20~30%的有机粘合剂混合后球磨,得
华中科技大学 2021-04-14
无机陶瓷超滤膜在生物发酵和制药行业中的应用
1.发酵液的澄清过滤技术 在抗生素(头孢类、硫酸连杆菌类、青霉素类、红霉素类等)、有机酸(赖氨酸、谷氨酸、L-乳酸柠檬酸、核苷酸等)、酶制剂(植酸梅等)以及其它医药和食用产品的生产中,采用陶瓷膜超滤技术替代板框、转鼓、离心、硅藻土等传统过滤工艺进行发酵液的菌体和大分子脱除,有以下突出优点: »高效成分收率高,比采用传统过滤方式提高5-12%; »分离精度高,透过液杂质含量少、澄清透明,减轻后续处理难度; »浓缩倍数高,大大降低水使用量,废水排放量少; »连续工作时间长,再生简单高效,费用是有机膜的1/5-1/10; »膜元件使用寿命长,是有机膜的3-10倍; »配套的纳滤浓缩,形成膜集成系统。 陶瓷膜在发酵工业中已成功应用,并取得了开创性的成果: »建立了膜污染形成的动力学方程,解决了膜污染问题,开发出专用的膜清洗再生方法; »有效解决了目标产物的降解和失活问题; »通过改变常规物料洗水方式,有效提高了膜的渗透通量和抗污染性,减少了洗水用量,提高了目标产物的收率;正是这些问题的解决,实现了陶瓷膜在生物发酵行业的规模应用。 2.氨基酸生产中的应用技术 在谷氨酸发酵液除菌中的应用: 采用陶瓷膜进行谷氨酸发酵液的除菌,不仅可以回收蛋白,而且可以显著降低离交过程的洗水量,同时降低污水处理负荷。将陶瓷膜应用于谷氨酸发酵液除菌过程,可实现除菌、洗菌、浓缩过程连续化操作。 乳酸生产中的应用: 目前,已经开展了将陶瓷膜应用于乳酸工业生产的技术研究和市场推广工作。陶瓷膜技术与活性炭吸附技术集成应用于乳酸工业生产中,能起到克服传统乳酸生产工艺中的流程长、处理难度大、能耗高、成本高、产品纯度低等缺陷,对提高产品竞争力将有重要的意义。 甘氨酸净化中的应用: 甘氨酸又名氨基乙酸,溶于水,微溶于乙醇,是食品、医药、化工等重要原料之一。采用陶瓷膜分离技术去除工业级甘氨酸中的微量悬浮杂质,以得到食品级、医药级甘氨酸产品。 该技术已实现了工业化应用,工业化装置为两套各8 m2的陶瓷微滤膜设备,用于甘氨酸净化过程中粉末活性炭的去除,年处理3000吨甘氨酸,目前该装置已稳定运行一年,平均通量800 l•m-2•h-1;膜再生方便,清洗周期约1个月,采用纯水冲洗即可,同时清洗后水还可用于生产过程中。采用陶瓷膜微滤净化后,甘氨酸产品经高倍显微镜检测未发现残余活性炭粒子,完全满足了出口的质量要求。 3.中药生产及植物提取技术 传统中制药剂采用水提醇沉加蒸发工艺,周期长、建设成本高、能耗大、收率低、操作环境差、环境污染严重、三废治理成本高。 用无机陶瓷膜对中药水提液进行澄清处理有显著优点:水提液无须冷却可直接过滤,减少生产环节,膜的再生方便;除菌彻底,膜本身可直接高温灭菌;无论中药水提液性质如何,对膜本身没有影响;对中药有效成份基本无截留等。 陶瓷膜用于中药生产和植物提取的显著特点: ▲降低防爆等级,基础建设和生产线投资费用少,利于安全生产; ▲减少工序,缩短生产周期; ▲节省溶媒,降低原料成本和治污成本; ▲有效成分降解和流失少,色素等不增加; ▲能同时去除悬浮颗粒,菌体、鞣质、淀粉、胶体、蛋白、部分色素等大分子,澄明度高; ▲膜元件寿命长、再生简便费用低,操作过程稳定,产品质量能得到充分保证; ▲配套纳滤浓缩,形成膜集成系统。
南京工业大学 2021-01-12
无机陶瓷超滤膜的石油和化工行业中的应用
1.油田采出水的处理技术 油田采出水处理是石油生产中的重要环节,这一过程包括了提供储油地层增压注水所进行的一切水质改造过程(也有一小部分是为了污水达标排放),这一过程随油田开采期的延长,重要性愈显突出。陶瓷膜用于油田采出水处理具有明显的优点,首先在于材料的亲水性憎油特性,有利于防止有机类物质的污染;其次由于陶瓷膜材料的良好化学稳定性,可用于强酸、强碱、强氧化还原剂等清洗剂来清洗再生;再次陶瓷膜的机械强度高,能在高温、高压下使用和清洗。最后,陶瓷膜出水水质好,水质稳定,完全能满足标准SY/T5329-94对低渗透油层注水水质的要求。从目前国内外陶瓷膜研究应用的情况来看,陶瓷膜处理采出水的设备投资和运行成本较其他水处理方法也具有较明显的优势,这主要是由于陶瓷膜设备使用寿命长、占地面积少、配套设施少等。 2.脱沥青油中溶剂回收技术 通过精馏得到的大部分的石油炼制成分大都做为重油使用,由于越来越严厉的环境法规,需要对这些重质燃料进行催化剂重整,在炼制过程中,由于沥青质的存在,容易使催化剂发生中毒,可以在重油中加入一种链烷烃溶剂如戊烷来使沥青质沉积,以去除重油中的沥青质。脱沥青后的混合物可采用超滤技术将油和溶剂分离,从而回收溶剂戊烷,达到重复使用目的,而脱沥青油则送催化裂化或者加氢裂化。对于这类体系,高分子膜难以适用。利用陶瓷膜耐高温、耐有机溶剂的特性,可去除重油中的沥青质。 3.石油重组分直接脱沥青技术 采用无机陶瓷膜技术可以对石油重组分直接进行沥青的脱除,使用氧化锆超滤膜,孔径为6.3 nm,在温度150ºC,流速11.5 m•s-1的条件下可维持较长时间的稳定通量。相比较而言,氧化锆对石油组分的吸附作用较小。从过程研究来看,沥青质的结构以及分子量分布对陶瓷膜的操作有很大的影响。
南京工业大学 2021-01-12
一种铂铜凹形合金纳米晶的制备方法及其制备的铂铜凹形合金纳米晶
本发明公开了一种铂铜凹形合金纳米晶的制备方法。将油溶性的铂源和铜源溶于油胺中得第一溶液;将十六烷基三甲基溴化铵和三正辛基氧膦溶解于油胺中得第二溶液;将第二溶液搅拌的同时加热至160-200℃,用移液枪将第一溶液注入上述第二溶液中,160-200℃下反应2-24小时;将得到的产物离心分离,即得铂铜凹形合金纳米晶。本发明所用试剂较为简单,无毒无害,制备方法简单,较易实现,具有较重要的学术和现实意义。本发明还公开了所述制备方法制备的铂铜凹形合金纳米晶,大小均一,分散性好,成分可调。
浙江大学 2021-04-11
耐高温系列化纳米隔热材料
项目成果/简介:本课题组自主开发了纳米氧化物制备工艺,结合共沸蒸馏和膜处理技术,获得晶粒度在10~20 nm的氧化物陶瓷粉末,最高耐热温度1400℃以上。该项制备技术于2004年获得国家发明专利(专利号ZL01128448.X)。2001年10月,“纳米氧化锆粉体制备”项目通过了湖北省科学技术厅主持的科技成果鉴定(证书编号:鄂科鉴字[2001]第2172380号),鉴定委员会认为:纳米氧化锆粉体制备工艺属于国内外首创,由该工艺生产的纳米氧化锆粉体的质量达到国际领先水平。2002年9月,“纳米氧化锆粉体制备技术”项目列入“十五”湖北省科技攻关计划重大项目:“纳米材料的应用研究与开发”项目。2003年4月,“纳米氧化锆粉体”项目列入国家重点新产品。截止目前,共授权相关领域发明专利26项,系列成果3次获得湖北省技术发明奖。该系列技术专利权在中国地质大学(武汉),已经完成耐高温隔热粉体和涂层的中试验证,技术成熟度高。在进行纳米氧化锆粉体研发工作的同时,还自主研发了二次造粒方法制备纳米氧化锆球形团聚体,试制出适用于热喷涂工艺要求的、具有纳米结构的氧化锆微米级氧化锆喷涂粉末,该粉末可以用于等离子喷涂等相关工艺。课题组研发的纳米氧化锆材料开始在我国航空发动机和燃气轮机热震涂层等领域进行初步试验。目前,纳米氧化锆材料已经经过了**发动机FWS**、舰船动力GT**、地面发电燃气轮机QD70A、QD128 燃气轮机、XX14、XX20 等型号的实际考核、验证,并在空军第三代X10、X11 等型号飞机上成功应用。与北京钢铁研究总院合作,将纳米氧化锆团聚体材料,应用于烟燃气轮机纳米涂层技术及应用,开发出了烟、燃气轮机热端部件纳米ZrO2热障涂层,该涂层具有优良的结合强度、隔热、抗热震性能,已成功应用于PG6541燃气轮机和YL14000A烟气轮机热端部件的实际应用,使用寿命较传统ZrO2涂层提高3倍以上。与贵州***公司合作,将纳米氧化锆材料粉末作为涡轮叶片热障涂层陶瓷面层,经入厂复验检查符合技术标准要求,经生产试验与后期使用考核。在 2011年通过中航工业相关单位组织的评审,并被制定为**系列发动机和**发动机热障涂层陶瓷面层粉末原料提供单位。F***系列发动机是我国自主研发空军第三代系列飞机的重要动力,目前已定形、并批量装备部队使用。解放军第***工厂承担F***系列发动机维修任务。中国人民解放军***工厂在进行已使用300小时寿命F***发动机的维修任务过程中。我们还开发了氧化锆靶材、高熵氧化锆、高熵稀土锆酸盐等,相关技术已经完成了中试。知识产权类型:发明专利技术先进程度:达到国际先进水平成果获得方式:独立研究获得政府支持情况:国家级计划/专项类别:科技创新重大专项获得经费:600.00万元自筹资金:500.00万元自筹资金来源:企业
中国地质大学(武汉) 2021-04-10
低成本耐高温纳米隔热保温材料
项目成果/简介:该项目是基于固废为原料的高性能隔热保温材料,包括稻壳硅,赤泥,石膏等。以及污水处理回收后的COD有机物,花生壳等农业固废基于特色低温烧结技术制备的高性能隔热保温材料。优势是成本低,制造工艺简单,可做成板材,涂料及异性件等。解决固废的高附加值利用问题,具有很好的社会经济效益。产品优势:1) 成本低采用特殊烧结技术,烧结温度低于1000度,比普通的隔热材料烧结温度低400度以上,并采用廉价的造孔剂如COD污水回收有机物等作为造孔剂,制造过程简单。2)使用温度范围宽 使用温度超过1300度,主要成分氧化硅,氧化铝,氧化锆,等高温耐热材料,也可石膏,赤泥,稻壳或复合成分,耐热度高。3)强度高,机械力学性能好,制造工艺简单 可以作为毡,板,或各类异性件,成型工艺简单,不需压力成型烧结,材料的烧结强度高,不易破碎。可以作为建筑外墙隔热,窑炉隔热,钢铁冶炼,农业等。图1 低温烧结的硅基致密陶瓷4)隔热性能好 以回收污水有机物作为造孔剂,原位矿化原理合成纳米材料,闭孔气孔率高,隔热性能好。也可直接利用稻壳中的有机固废成分造孔。 图2 稻壳硅基隔热保温材料显微结构项目阶段:项目进展:用于速热陶瓷及金属的隔热保温材料,投产阶段项目目前基于稻壳硅等固废开发了耐热1400度以上的隔热保温材料,用于不锈钢MCH速热电炼炉隔热保温材料立项投产阶段。同时适合用于石墨烯零秒速热陶瓷农业地温恒温系统的隔热保温,及道路化雪材料的底板隔热保温用途。知识产权类型:发明专利技术成熟度:可以量产技术先进程度:达到国际先进水平成果获得方式:独立研究获得政府支持情况:无
天津大学 2021-04-11
一种纳米孔电学传感器
本发明公开了一种纳米孔电学传感器。它包括基板、第一绝缘层、对称性电极、电接触层、第二绝缘层、纳米孔;在基板上依次设有第一绝缘层、对称性电极,在第一绝缘层上和对称性电极边缘上设有电接触层,在对称性电极上设有第二绝缘层,在基板、第一绝缘层、对称性电极和第二绝缘层的中心设有纳米孔。本发明的纳米电极的厚度可以控制在0.35~0.7nm之间,达到检测单链DNA中的单个碱基的电学特征的分辨率要求,从而适于便宜,快速电子基因测序。本发明的纳米孔电学传感器解决了将纳米电极集成于纳米孔的技术难点,其制备纳米电极的方法简单。
浙江大学 2021-04-11
纳米金刚石膜涂层及工业应用
纳米金刚石的金刚石晶粒尺寸在100nm以下, 表面极其光滑平整, 摩擦系数极低(可小于0.05), 因此是十分理想的工具(模具)涂层和光学涂层材料, 同时在MEMs (微机电系统)和高性能大屏幕(场发射)显示技术等领域也有非常好的应用前景。 本项目组采用微波等离子体CVD和 DC Arc Plasma Jet CVD两种工艺方法, 在玻璃, 硅, 钼和硬质合金等衬底材料上成功制备了纳米金刚石膜。 在玻璃衬底上制备的纳米金刚石膜晶粒平均尺寸小于100 nm, 表面粗糙度小于Ra 5nm, 采用纳米力学探针测量的显微硬度高达8000kg/mm2, 在可见及近红外区域具有非常好的透过特性, 紫外喇曼光谱(在新加坡国立南洋理工大学测试)显示薄膜几乎为纯净的金刚石纳米晶粒组成。在其它衬底上的纳米金刚石膜的组织结构和性能测试正在进行之中。 纳米金刚石膜涂层硬质合金工具: 其中最有前景的是纳米金刚石膜涂层硬质合金微型钻头; 纳米金刚石膜涂层光学应用: 包括诸如”永不磨损钻石涂层玻璃表壳”和”永不磨损钻石涂层玻璃眼镜片”, 及ZnS, Ge, Si等重要红外军事光学材料的抗(雨滴、沙粒)冲刷涂层; 微机电系统(MEMs)的微机械构件: 如微型齿轮, 轴, 轴承等; 高性能大屏幕显示器件
北京科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 36 37 38
  • ...
  • 115 116 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1