高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种金属零件的增减材复合制造装备及方法
本发明公开了一种金属零件的增减材复合制造装备及方法。该装备包含增材制造组件、减材制造组件、气氛调控组件和控制系统。所述增材制造组件用于对待加工零件实施激光选区熔化;减材制造组·826·件用于对已熔化成形的金属零件切片层实施机械加工;气氛调控组件用于在零件制造过程中为激光辐照区域提供保护气体和清除激光辐照区域产生的金属烟尘;控制系统用于处理待成形金属零件 CAD 模型,生成增材制造组件与减材制造组件的加工
华中科技大学 2021-04-14
一种叠层片式热压敏复合电阻器及其制备方法
本发明公开了一种叠层片式热压敏复合电阻器及其制备方法, 复合电阻器由压敏电阻部分、中间过渡层部分及热敏电阻部分叠加组 成,压敏电阻部分的结构为压敏电阻瓷片—第一电极层—压敏电阻瓷 片—第二电极层的交叠层压组合,第一电极层与第二电极层分别错开; 热敏电阻部分的结构为:热敏电阻瓷片—第三电极层—热敏电阻瓷片 —第四电极层的交叠层压组合,第三电极层与第四电极层分别错开, 中间过渡层部分位于热敏电阻部分与压敏电阻部分的中间。
华中科技大学 2021-04-14
零件与模具的熔积成形复合制造方法及其辅助装置
零件与模具的熔积成形复合制造方法及其辅助装置,属于零件与模具的无模生长制造与再制造方法,解决现有方法中,熔融材料流淌、坍塌,以及成形件易开裂、变形和残余应力大、组织性能不稳定的问题。本发明的方法包括模型分层、生成数控代码和熔积成形步骤,在与熔融软化的区域相接触处,安装微型轧辊或微型挤压装置;在进行熔积成形步骤的同时,微型轧辊或微型挤压装置随着熔积区域同步移动,对熔积区域作压缩成形与加工。本发明的微型轧辊,包括左、右侧立辊和水平辊。本发明防止熔融材料下落、流淌、坍塌,避免成形件开裂、减轻或消除残余应力
华中科技大学 2021-04-14
医用金属植入体表面壳聚糖季铵盐/胶原复合涂层的制备方法
本发明公开的医用金属植入体表面壳聚糖季铵盐/胶原复合涂层的制备方法,包括配制含钙、磷、胶原、壳聚糖季铵盐的电解液,以铂片作为对电极,以酸清洗过的金属基板作为工作电极,采用多电位阶跃模式进行电化学沉积,通过调整每段阶跃工作电极电位的正负、大小以及每段沉积时间,无需多次沉积,可快速简易地实现壳聚糖季铵盐在基板表面矿化胶原涂层中空间分布可控,即胶原涂层里层富集壳聚糖季铵盐和涂层外层富集壳聚糖季铵盐。利用壳聚糖季铵盐带有正电荷的性质,将生物生长因子承载到胶原涂层不同空间位置,实现了生物生长因子释放行为可控调节,同时增大了涂层承载生物生长因子的能力,在硬骨组织修复领域具有广泛的应用前景。
浙江大学 2021-04-13
一种互穿网络水凝胶填充复合分离膜的制备方法
本发明公开了一种互穿网络水凝胶填充复合分离膜的制备方法,包括如下步骤:首先,将聚合物膜在第一单体溶液中浸泡,取出后在紫外光下辐照交联,得到第一网络凝胶复合分离膜;然后,将第一网络凝胶复合分离膜在第二单体溶液中浸泡,取出后通过热引发交联,形成互穿网络水凝胶填充复合分离膜。本发明制备的互穿网络水凝胶填充复合分离膜具有重金属离子吸附功能,在过滤分离的同时,可有效吸附水中的重金属离子。本发明提供的方法简单、高效、易操作、成本低、可工业化生产,对铜、铅、汞、锌、镉、镍等多种重金属离子具有优异的吸附性能,既可用于工业重金属污水处理,也可用于生活饮用水中去除重金属离子。
浙江大学 2021-04-13
一种冷凝除湿与溶液除湿复合的新风处理装置及方法
本发明公开了一种冷凝除湿与溶液除湿复合的新风处理装置及方法,该装置该方法包括空气循环系统、两个制冷剂循环和两个溶液循环;新风与回风进行全热交换后,先由表冷器进行冷凝除湿,再由溶液除湿器进行除湿调温,直至达到理想的送风状态;回风和另一部分新风用于溶液再生和处理冷凝热,通过调节该处新风量的大小可以实现装置中关键部件之间的热量以及溶液参数随新风处理符合变化的动态匹配;溶液除湿器和再生器均采用选择透过性膜芯体,可以避免送风和排风中的带液。该装置的节能效果明显,而且解决了常规溶液除湿空气处理装置中的运行参数匹
东南大学 2021-04-14
一种多维-多级孔SiO2/C复合粉体及其制备
本发明涉及一种多维-多级孔SiO2/C复合粉体及其制备方法。其技术方案是:将稻壳置于盐酸、硫酸或草酸溶液中,90——100℃水浴1——2h,过滤;水清洗稻壳至清洗液的pH值为6——8,烘干,再加入氯化锌的水溶液中,放置24——72h,在80——100℃条件下保温36——144h,得到预处理稻壳;将预处理稻壳加入到含镍的有机配合物的溶液中,放置20——24h,在80——100℃条件下保温24——30h;然后在800——1300℃条件下于氩气或氩气气氛中保温3——4h,制得多维-多级孔SiO2/C复合粉体。本发明成本低廉、工艺简单、环境友好、产品附加值高和适用于工业化生产;用该方法制备的多维-多级孔SiO2/C复合粉体具有一维/三维复合、多维/多级孔原位形成、比表面大的特点。 (注:本项目发布于2014年)
武汉科技大学 2021-01-12
轻合金表面微弧复合处理设备及工艺技术开发
微弧复合处理(Micro-arc Composite Ceramic,MCC)技术将不需前处理的微弧氧化与静态防护性能优异的有机物涂装技术相结合,在铝、镁合金表面制备具有高性能、多用途的陶瓷有机复合涂层,性能明显优于单一微弧氧化或传统涂装工艺。研究团队近年来承担了科技部“十五”科技攻关计划项目、国家科技攻关计划引导项目、国家高技术研究发展计划(863计划)项目、科技部“十一五”科技支撑计划项目及科技部国际合作计划等项目。微弧复合处理工艺简单、环保、无排放,处理效率高,涂层综合性能优异,以及对材料的适应性强(复杂构件或深孔管件)等优点,开发的设备运行稳定,已成为业界认可的铝、镁合金“环保型”表面处理技术,由在机械、汽车、国防、电子、航天、航空及建筑等领域有着极其广泛的应用前景。
南京工业大学 2021-01-12
一种操控低折射率介质纳米粒子的装置和方法
本发明公开了一种操控低折射率介质纳米粒子的装置和方法,属于光学捕获和光学微操控技术领域。该装置由激光器、扩束镜组、偏振转换器、反射镜、分束器、空间光调制器、光阑、油浸物镜和位移台组成。该方法通过偏振转换器和空间光调制器生成空间位相复杂分布的径向偏振涡旋光场,在油浸透镜的聚焦下利用两列相向传输的光场干涉生成中空的球形焦斑,能够将处于焦场范围内的低折射率介质粒子稳定地三维捕获在焦场的中心。通过改变聚焦条件和空间光调制器的加载位相,能够实现多粒子操控和粒子运动轨迹的灵活调控。该方法克服了传统光镊技术中无法三维捕获低折射率介质粒子的难题,在一系列涉及光学操控的领域都有着重大的应用前景。
东南大学 2021-04-11
纳米钛酸钡基电子陶瓷粉体的溶胶-凝胶自燃合成产业化
铁电陶瓷粉体及其集成器件的研究与开发是目前最为活跃的领域。大部分铁电陶瓷是钙钛矿型复氧化物,其中最为重要的是BaTiO3基氧化物陶瓷。BaTiO3是在第二次世界大战的1942年到1945年间,由美国、苏联、日本各自发现的高介电常数、强介电体的材料。由于其具有优越的介电、压电、铁电性能,被广泛应用于制备各种陶瓷电容器、微波器件、铁电存储器、温度传感器、非线性变阻器、热敏电阻、超声波振子、蜂窝状发热体等电子器件。随着现代科学技术的飞速发展和电子元件的小型化、高度集成化,需要制备与合成符合发展要求的高质量的钛酸钡基陶瓷粉体。纳米BaTiO3基电子陶瓷具有独特的绝缘性、压电性、介电性、热释电性和半导体性为元器件的小型化、集成化带来可能,大大提高了产品的附加值和市场竞争力。如采用纳米BaTiO3粉末制多层电容器,可以显著减薄每层厚度增加层数,从而大大提高电容量和减小体积。因此,低成本合成钛酸钡基纳米陶瓷粉体对我国信息产业、电子工业等的发展具有重要的意义。 溶胶-凝胶自燃合成(Sol-gel Autoignition Synthesis,SAS)是九十年代伴随着高温燃烧合成的深入研究和超纯、超细氧化物陶瓷的制备而出现的一种低成本制备与合成单一氧化物和复杂氧化物的技术。它是指有机盐凝胶或有机盐与金属硝酸盐在加热过程中发生氧化还原反应,燃烧产生大量气体,可自我维持并合成所需燃烧产物的材料合成工艺。它的主要的特点有以下几点:(1):燃烧体系的点火温度低(150℃-200℃),一般为有机物的分解温度;(2):燃烧火焰温度较低(1000℃-1400℃),燃烧时产生大量气体,可获得具有高比表面积的陶瓷粉体。高温燃烧合成燃烧温度一般高于1800℃,合成的粉体粒度较粗,而SLCS则可制得纳米粉末;(3)各组分达到分子或原子水平的复合;(4):反应迅速:燃烧合成一般在几分钟内完成;(5)所合成的粉体疏松多孔,分散性良好;(6):耗能低;(7):所用设备和工艺简单、投资小;(8):自净化:由于原料中的有害杂质在燃烧合成过程中能挥发逸出,所以产品纯度易于提高。 本项目申请者采用SAS技术已经成功地合成了粒度达70nm左右的BaTiO3陶瓷粉体。 广泛应用于制备各种陶瓷电容器、微波器件、铁电存储器、温度传感器、非线性变阻器、热敏电阻、超声波振子、蜂窝状发热体等电子器件。
北京科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 274 275 276
  • ...
  • 396 397 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1