高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
4k超高清校园电视台
  北极环影各子系统实现功能:      灯光系统:灯光系统为LED影视专用灯,可通过DMX512协议进行远程控制灯光的强弱、开关。满足多场景的灯光需求。      演播室声学装修:针对不同房间格局进行不同的校园电视台风格设计,所有的材料为阻燃、环保材料,隔音、回音处理到达业界最高水平。   虚拟抠像:对拍摄好的素材文件经过后期剪辑达到完美的视觉效果。      后期剪辑系统:可以进行4机位信号同时输入,预留2路后期扩充接口可以对新闻、访谈节目后背景实时根据不同类节目添加不同的虚拟场景并且场景可以进行任意自主搭建。      通过对学校现有教室的专业改造搭建校园电视台,校园电视台划分为两大区域,分别是拍摄区和导播区。      拍摄区:根据需求布置录制场景环境,部署演播桌椅、高清摄像机、桌面话筒、蓝箱/绿箱,专业灯光搭建、提词器等设备。   导播区:部署各系统设备,包括虚拟演播系统主机、内部通话系统、非编电脑、流媒体服务器电脑、题词电脑等      虚拟演播室主机将录制场景画面、音频信号结合计算机信号等所有信号同步录制、直播;真实再现录制情景,实时生成采用标准压缩的流媒体文件,能自动以文件形式保存,并能进行后期编辑;能通过网络实现远程直播,能达到播放流畅、控制方便,轻松构建精品级校园文化,德育资源。      校园电视台系统模块:      3D虚拟演播室系统、视频采集系统、非线性编辑系统、流媒体系统、现场监看、音频系统、LED灯光系统、蓝箱八大部分组成,是供学校自行拍摄、制作各种电视节目录像,如领导讲话、优秀示范课、教师访谈录、小型文艺节目、新闻节目等,并具有现场直播、录播、转播、转录等多种功能。   高清虚拟演播室主要包含:      电视节目摄录设备(信号采集系统):主要包括广电级高清摄像机、专业硬盘录像机等;      演播室设备(真三维虚拟演播系统):主要是3D虚拟演播室系统、内部通话系统、提词器等;      音频设备:播音话筒、无线领夹话筒、音频处理器、啸叫回声反馈抑制器、调音设备等;      演播室:舞美设计(演播室背景和场景装饰)、声学隔音处理、灯光布局等;      抠像蓝箱、绿箱,导播控制室,演播中心区域;   数字发布系统及资源管理平台:流媒体直播点播系统、服务器、高清编码器;      监控系统:返监大屏、监视器、摄像机信号、直播信号、虚拟合成信号等;      后期编辑:非线性编辑系统(软件、服务器、采集卡)。      校园电视台系统核心设备 - 真三维虚拟演播室系统:      北极环影真三维虚拟演播室结构简单、高度集成,一套产品轻松独立完成传统演播室中的信号录制、节目信号切换、字幕叠加、节目播出、流媒体发布等功能,一机多能,全方位解决学校设备操作、节目制作的烦恼,适用于学校活动、文艺晚会、重大会议、精品课制作、情景教学、舞台剧等场景,彻底解决演播室系统设计复杂、采购成本高昂、安装调试困难,设备维护麻烦等诸多问题。   校园电视台的优点:      1、真三维虚拟抠像:电影级蓝绿一键抠像、海量3D场景元素任意组合搭建、多信号多角度同时抠像;      2、视频录制及直播:采集分辨率、码率设置、帧延迟设置、音频延时调节,多信号同时录制、支持多种直播类型、自由设置直播分辨率、码率;      3、多功能集成:现场导播、虚拟演播一体化集成、现场连线、字幕、画中画、帧动画效果、虚拟机位、多屏幕输出;      4、全媒体多格式信号实时输入输出:4路SDI,4路HDMI、网络流、PPT、本地媒体、全格式兼容输入。      24小时服务热线:010-60530980      北京北极环影科技有限公司      北京市通州区保利·大都汇写字楼7号楼B座9层
北京北极环影科技有限公司 2021-08-23
超高速3D打印机
HALS超高速光固化3D打印技术,HALS(Hindered Asynchronous Light Synthesis )是博理科技从材料成型机理出发研发的全新3D打印技术。相较于传统的光固化打印,HALS实现了材料的超高速固化成型,成型速度达到传统速度的20~100倍,大大提升了3D打印的工业化生产效率。 HALS技术及HALS系列3D打印机,由博理独家首创,实现了3D打印批量化快速制造,使产品生产摆脱了传统模具的限制,大大简化了制造工艺。结合3D打印增材制造的成型优势,可制备出更复杂的产品结构,为3D打印真正地用于生产制造奠定了行业基础,是光固化3D打印技术成熟的标志。
苏州博理新材料科技有限公司 2022-07-19
廉价、高效的材料微、细观力学性能原位观察系统(产品)
成果简介: 对于各种颗粒、纤维增强复合材料,目前主要采用大规模的宏观力学实验寻找力学性能变化规律,进而为提高材料力学性能提供支持,实验繁杂,周期长,投入大。采用显微镜原位力学性能测试方法,对复合材料在各种外力作用下的破 坏过程进行细观观测,有助于对填料、纤维的增强效果及其对复合材料力学性能的影响进行研究,进而探寻影响材料力学性能的主要因素,可大大节约开发成本, 提高开发效率。但目前国内所具有的细观力学性能观测条件主要利用带有原位加 载台的扫描电镜技术,该实验系统成本昂贵,国内仅有少数几家科研院所拥
北京理工大学 2021-04-14
超细破壁灵芝孢子粉生产技术与设备简介
灵芝孢子是灵芝成熟时释放出的褐色粉末,集中了灵芝的精华,含有丰富的灵芝多糖,有机锗、多肽、三萜及甾醇类等多种功效成分,能有效的预防肿瘤的发生,并能明显破坏肿瘤细胞中端粒酶的活性,抑制肿瘤细胞的生长,配合治疗肿瘤时,可减轻放疗、化疗的反应;能增强细胞免疫水平,从而提高人体自身的免疫能力,延缓人体衰老;对诸如肝炎、心血管病、白血球减少、肌肉萎缩、神经衰弱、支气管炎及哮喘等慢性病有一定的辅助治疗作用。 然而,灵芝孢子需经破壁与超细化处理后,其中的营养成分才能被人体快速充分完全吸收。研究表明
南京理工大学 2021-04-14
疏水疏油微纳米复合型超细干粉灭火剂
成果创新点 本项目采用自研超音速气流粉碎、分级与改性一体化 系统实现粉体的原位改性,即气流粉碎制备超细颗粒的同 时对超细颗粒进行表面改性,合成粉体专用氟碳表面改性 剂,采用化学包覆方法将灭火基料、具有催化、绝缘功能 的纳米级粒子和表面改性剂进行有序聚合,获得具有极好 的分散性、流动性、疏水性、疏油性、绝缘性的微纳米复 合型超细干粉灭火剂。 核心解决问题、核心优势等: 1.自研
中国科学技术大学 2021-04-14
疏水疏油微纳米复合型超细干粉灭火剂
本项目采用自研超音速气流粉碎、分级与改性一体化系统实现粉体的原位改性,即气流粉碎制备超细颗粒的同时对超细颗粒进行表面改性,合成粉体专用氟碳表面改性剂,采用化学包覆方法将灭火基料、具有催化、绝缘功能的纳米级粒子和表面改性剂进行有序聚合,获得具有极好的分散性、流动性、疏水性、疏油性、绝缘性的微纳米复合型超细干粉灭火剂。 核心解决问题、核心优势等: 1.自研超音速气流粉碎分级与改性一体化系统,实现粉体原位改性,大幅度降低生产成本; 2.自行设计并合成氟碳表面改性剂,突破粉体疏水、 疏油相矛盾的技术瓶颈,实现疏水疏油微纳米超细干粉灭火剂的可控制备,解决抗复燃性能差和难清理技术难题。 
中国科学技术大学 2023-05-19
纯电动车用电力驱动系统的研究与开发
纯电动车用电力驱动系统的额定功率7.5kW,额定转矩24Nm,峰值功率可以达到24kW,峰值转矩100Nm,效率大于92%,最高效率为96%,转速6000rpm,电力驱动系统与整车控制器配合完成21项功能和11项系统故障保护,与国内外类似产品相比综合技术指标达到了国际先进水平。
天津职业技术师范大学 2021-04-10
高纯单分散纳米石英球技术及产业化
中试阶段/n国内市场高规格硅微粉用量约8万吨以上,其中大约1/3为晶体石英球,价格也5-30万元/吨不等。国内超纯石英粉需求约10万吨(其中光伏年用量约7万吨).本项目可在超纯石英和单分散高纯球两大技术方向生产高品质产品,适用对应的市场,也可以做最高端的单分散超纯石英球 。本项目产品粒径可控,成本视规格不同为1.5-5万每吨。由于不以天然石英为原料,不受天然原料限制,可以打破尤尼明公司超纯石英粉的垄断地位,根本扭转我们在石英粉技术落后的局面,在电子级晶型石英球(硅微粉)市场上亦是独创技术,比国内现有产品性价比优势明显。拟初建5000吨/年装置, 若产品以5.5万/吨(均价)售出, 年利润约为上亿元。。项目的关键技术体现在以下几个方面:。1、以二氧化硅溶胶为原料,原料成本低;。2、生产工艺简单,一步法合成;。3、石英球粒径从10nm可至微米大小粒径可调,高度单分散;。4.、产品纯度可达99.999%,球形,单晶,无放射性。。技术的创新点有以下几个方面:。1、 不依赖天然石英原料。无放射性,产品纯度高。。2、以二氧化硅溶胶为原料,产品性能稳定,石英球大小粒径可调,高度单分散;。3、工艺简单,对设备要求不高,生产成本低,安全性高;。项目的环保及节能特性。1、反应余热交换,节省能耗。2、反应母液(晶化催化剂)循环使用,基本没有污染排放。
武汉工程大学 2021-04-11
纯电动公交客车智能化自适应自动变速系统
西南大学 2021-04-13
一种基于纯测向的被动水下声学定位方法
本发明公开了一种基于纯测向的被动水下声学定位方法,由布设在海底的单一声源发射定位信号,搭载在AUV船艏以及船尾上的应答器基阵接收声源信号,计算出每个基阵上的两个应答器的接收信号间的相位差,得到海底声源分别和船艏、船尾连线与船体之间形成的角度,从而得到AUV与声源之间的相对位置信息,之后通过坐标转换可以得到AUV当前的大地坐标。本方法仅通过相位差信息来进行定位,从而达到纯测向的目的,能够有效规避声速在水下传播的不规则而造成的距离误差,能够提升定位精度。此外应答器被动接收声信号,无需上浮出水面进行位置更新,不易暴露位置,提高了隐蔽性和安全性,且应答器置于AUV上,避免了常规置于海底时,所存在的数据通信问题。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 32 33 34
  • ...
  • 75 76 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1