高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
耐药性超级细菌治疗新机制
发现一种已于临床应用多年专门对付幽门螺旋菌治疗胃溃疡、含有金属铋的抗菌药物 (枸橼酸铋钾Colloidal Bismuth Subcitrate CBS),能有效“驯化”抑制一些死亡率极高、具多重耐药性超级细菌的活跃性,并能延缓细菌耐药性的产生,让现有抗生素的使用周期大为延长,可对付包括会引发出血性腹泻、败血症、脑膜炎和多发性脓肿等严重感染的耐碳青酶烯类肠杆菌(CRE)和耐碳青酶烯类肺炎克雷伯杆菌(CRKP)等。 耐碳青酶烯类肠杆菌(CRE)被世界卫生组织评为当今全球最高危的三类超级细菌之一,是一类对几乎全部的抗生素都具有耐药性的超级细菌,经人对人的传染性非常高。据美国CDC的数据,受到CRE感染并发展为血液感染的病人致死率可高达50%。NDM-1(New Delhi Metallo-β-lactamase 1)是一种导致CRE超级细菌形成的重要耐药因子,携带NDM-1的超级细菌感染控制难度大,死亡率高,对公众健康造成极大的威胁,有机会引发抗生素时代的终结从而使人类进入后抗生素时代。科学家已在除南极洲外逾70个国家和地区发现携带NDM-1的致病菌。 该研究团队发现含铋化合物可成为一类对付NDM-1的强力抑制剂。团队通过对港大余雷觉云感染及传染病中心总监何栢良医生在香港采集的NDM-1耐药大肠杆菌(简称NDM-HK)的一系列研究发现,在现有的抗生素疗法中加入含铋的抗菌药,携带NDM-1的超级细菌会逐渐被“驯化”,以常用的碳青霉烯类抗生素便能将这类细菌轻易杀死。 尤为重要的是,利用这种全新的联合疗法能把现有抗生素的用量减少近九成,并在较长时间内遏止NDM-1耐药性的进一步增强,从而使现有抗生素的使用寿命得以大为延长。研究团队在小鼠感染细菌模型中,使用含CBS的联合疗法能显著延长被NDM-1细菌系统性感染小鼠的存活时间,将小鼠的最终成活率提升25个百分点以上。目前研究团队将继续优化 CBS 的应用范围, 正实验超级细菌尿道感染等动物模型,以期更广泛对抗一系列的恶菌感染。
南方科技大学 2021-04-13
一种嗜酸性细菌的固定方法
嗜酸性细菌,如氧化亚铁硫杆菌、脱氮硫杆菌、排硫硫杆菌、嗜酸硫杆菌等需要在酸度较强的环境下生长,通常具有很强的耐酸性,试验表明,采用一些常规的包埋固定方法,如琼脂包埋法、海藻酸钙包埋法、聚丙烯酰胺包埋法、卡拉胶包埋法、明胶戊二醛包埋法等,细菌的生物活性并不是很高,限制了这类细菌在固定化中的应用。 
兰州大学 2021-04-14
高效广谱无公害细菌杀虫剂
苏云金芽孢杆菌(Bt)15A3菌株是南开大学在国家 “九五”重点攻关项目和津市科技攻关计划项目的资助下获得的、含有9种以上高效杀虫蛋白基因优势组合的野生菌株,属国内外尚未开发的苏云金芽孢杆菌科默尔亚种,具有自主知识产权。该菌株发酵性能极佳,采用25吨通用型发酵罐进行生产,发酵液效价在6000国际单位以上,不需浓缩工艺制备即超过国家一级品的毒力,发酵水平居国内领先、国际先进水平。试生产的悬浮剂、可湿性粉剂和高含量原粉的性能指标均超过国家农业部发布的苏云金芽孢杆菌制剂标准。同时还开发出适用
南开大学 2021-04-14
揭示丙酮酸循环为细菌提供能量
提出了细菌代谢状态决定细菌耐药性,建立了通过关键代谢物逆转细菌耐药性以控制耐药菌的新策略(Peng et al., Cell Metabolism, 2015)。在寻找新的逆转细菌耐药性的代谢物质中,发现谷氨酸(glutamate)可以逆转细菌耐药性。其在进入细菌后,不是遵循已知的TCA循环进行代谢(柠檬酸-异柠檬酸-酮戊二酸-琥珀酸辅酶A-琥珀酸-延胡索酸-苹果酸-草酰乙酸-柠檬酸),而是在草酰乙酸的基础上逐步生成磷酸烯醇丙酮酸、丙酮酸、乙酰辅酶A再从柠檬酸进入三羧酸循环,即柠檬酸-异柠檬酸-酮戊二酸-琥珀酸辅酶A-琥珀酸-延胡索酸-苹果酸-草酰乙酸-磷酸烯醇丙酮酸-丙酮酸-乙酰辅酶A-柠檬酸,形成一个全新的循环,故命名为丙酮酸循环(P循环)。进一步的试验证明,P循环是一条正常的生物有氧氧化的最终代谢途径。P循环消耗草酰乙酸, 而TCA循环消耗乙酰辅酶A。糖类、脂类和氨基酸可以直接进入P循环,而糖类和脂类进入TCA循环需要先转变为乙酰辅酶A,说明P循环才利于糖的利用。更重要的是,将P循环多于TCA循环的基因或酶进行相应的缺失或抑制,其对TCA循环的影响与缺失或抑制TCA循环中的基因或酶的影响一致,说明TCA循环耦合在P循环中。综上所述,该研究的创新点主要包括:1)P循环对于调控生物体内能量平衡发挥着重要的作用;2)TCA循环为P循环提供草酰乙酸,是P循环的一条重要旁路;3)P循环调控TCA循环;4)P循环在代谢物逆转细菌耐药性起到关键作用。
中山大学 2021-04-13
64085培养皿
宁波华茂文教股份有限公司 2021-08-23
64084培养皿
宁波华茂文教股份有限公司 2021-08-23
27012光照培养架
宁波华茂文教股份有限公司 2021-08-23
生化培养箱
产品详细介绍生化培养箱    LRH-70 LRH-70F  LRH-150   LRH-150F   LRH-250    LRH-250F ——微电脑控制(带定时),无氟制冷 顺应世界环保潮流,无氟将是我国制冷设备发展的必然趋势,一恒实验设备快人一全新无氟设计,使您始终走在健康生活的前面。国际品牌压缩机和循环风机,效率高、能耗低,不仅促进节能,而且使用寿命长,可将噪声降至更低限度,与传统低温设备相比,降温时间减少40%以上。 用途概述 适用于环境保护、卫生防疫、药检、农畜、水产等科研、院校、生产部门。是水体分析和BOD测定,细菌、霉菌、微生物的培养、保存、植物栽培、育种试验的专用恒温设备。 产品特点 1.采用镜面不锈钢内胆,四角半圆弧,易清洁,箱内搁板间距可调。 2.微电脑温度控制器,控温精确可靠。 3.设有独立限温报警系统,超过限制温度即自动中断,保证实验安全运行,不发生意外。(选配) 4.具有打印机或RS485接口,能记录温度参数的变化状况。(选配) 技术参数: 控温范围:0~60℃ 恒温波动度:高温±0.5℃,低温±1.0℃ 温度分辨率:0.1℃ 工作环境温度:+5~30℃ 定时范围:1~9999min 载物托架(标配):2/3/3块 电源电压:220V;50Hz 主要特点: 1、微电脑温度控制器,控温精确可靠。 2、采用镜面不锈钢内胆,四角半圆弧,易清洁,箱内搁板间距可调。 3、具有打印机或RS485接口,可连接记录仪和计算机,能记录温度参数的变化状况。(选配) 4、设有独立限温报警系统,超过限制温度即自动中断,保证实验安全运行,不发生意外。(选配)
西安禾普生物科技有限公司 2021-08-23
培养基系列
“培养基虽不是细胞培养中唯一重要因素,但确实是最重要的一种。” ——Wurm博士,瑞士联邦科技学会生物工艺学教授 《Genetic Engineering News》(2005) 本公司所使用的总部研发生产的独特培养基,克服大部分市售无血清培养基导致的细胞活性差、贴壁性差以及分泌外源蛋白的能力差等缺点。多层培养瓶的表面作为细胞生长层,是由透气不透水的聚苯乙烯制成,保证细胞得到更充分的气体交换,获得的细胞更健康、活力更强。并采用独特的细胞生长的培养条件,大大提高了细胞的吸附性和生长速度。 目前国内市场主要有无血清培养基和有血清培养基两种。 精准医疗治疗中需要生物试剂,所以在使用过程中对试剂要求极其严格。就细胞培养方面中,其精准源头就是培养基。现在国内乃至国际上所有厂家所生产的培养基都含有人血白蛋白,这就极不符合精准医疗的要求。因为人血白蛋白是从人体血液中提取,其中所含的成分不够明确,使用有人血白蛋白的培养基培养细胞可能会出现基因突变、出现不稳定等一系列问题。而我公司攻克了这一点,总部研发生产的培养基既无血清也无动物源蛋白,这在全球是第一家。
山东斯滕生物科技有限公司 2021-08-26
细菌群体趋化运动的“逃逸相变行为”研究
细菌通过多个趋化受体来感受周围不同的化学小分子,主动游动,实现获得更好的生长环境或者实现趋利避害。但不是强的正趋小分子都是很好的可利用营养物质—好闻的不一定有营养,同样,也不是容易代谢的营养就是强的趋化因子—有营养的不一定好闻。细菌在自然界中往往面临多种不同强弱的趋化小分子,多种不同可代谢程度的营养来源的复杂浓度梯度环境中,细菌群落是如何通过趋化行为抉择它们的去向,实现最优化它们的环境适应性与生长速度?细菌在个体与群体的选择上是否有不同?这一基于细菌的生物行为的研究也许对了解复杂的高等生物的群体行为也有所帮助。 北京大学物理学院欧阳颀院士领导的“生物物理”团队的罗春雄研究组在基于微流体细菌趋化分析芯片的实验研究中发现:在反向不同引诱物浓度梯度下,细菌首先趋向聚集于强引诱物而少营养的一端, 但当细胞密度超过一个阈值时,细菌群落部分“逃逸”强引诱物浓度场,游向趋化因子相对弱但可代谢物质富集的一端。这一现象被刻画为细菌群体运动的“逃逸相变行为”。罗春雄研究组通过与美国IBM沃森研究中心的涂豫海教授(北大定量生物学中心资深访问学者)合作,对此现象涉及的趋化受体间的协作行为进行了系统细致的理论分析和实验论证,发现营养物质通过数量较少的Tap趋化受体进行了响应行为,而且在较大的一个趋化响应参数空间均会出现由细菌密度超过临界密度而产生的逃逸条带(“Escape Band”)行为,该行为可以使得细菌群落在复杂的趋化物浓度场中获得更好的生长优势。相关的定量实验与理论研究以“The escape band in Escherichia coli chemotaxis in opposing attractant and nutrient gradients”为题于2019年1月23日在线发表于Proceedings of the National Academy of Sciences of the United States of America(PNAS)杂志上。细菌群体趋化运动的“逃逸相变行为” 文章第一作者为北京大学定量生物学中心博士研究生张玄麒,通讯作者为北京大学物理学院/定量生物学中心罗春雄教授及美国IBM沃森研究中心/定量生物学中心的涂豫海教授,参与人包括欧阳颀院士,前沿交叉学科研究院博士研究生司光伟,董一名,物理学院博士研究生陈凯悦。工作得到国家自然科学基金委、物理学院介观物理重点实验室、 北京大学定量生物学中心、北大-清华生命科学联合中心的支持。 工作原文连接: https://www.pnas.org/content/early/2019/01/22/1808200116
北京大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 26 27 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1