高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
安全绳
山东滨州波涛化纤制品有限公司 2021-09-06
江苏学蠡信息科技有限 公司
江苏学蠡信息科技有限 公司 2025-07-15
网络阅卷
1.采用“智能识别,无需额外定位技术”,印刷要求低,使用方便 本系统采用国内目前最先进的“智能识别”技术,答卷设计无需增加额外的定位点、定位线或同步头,也不需要以答题区域的边框、转角等作为定位识别符,确保了不因答题区域的线框偏移、变形、模糊或断线等因素影响扫描识别的稳定性及准确率。且系统中设置了自动识别偏移、折角检测、双页进纸等。 2.试卷纸张适应性好,支持超薄、加长纸扫描 本系统支持使用50克以上普通纸,以复印、速印或胶印方式双面印制答卷,2010年安徽中考各科试卷在本系统中均顺利通过扫描。 3.支持任意答题卷或答题卡的扫描、阅卷 由于采用了“智能识别”技术,本系统可做到在预先不知答题卡设计的情况下对任意答题卡或答题卷的顺利扫描和阅卷工作。2010年安徽中考阅卷成功使用本系统即是很好的例证。 4.互联网阅卷优势明显 本系统支持A4、A3及不规则尺寸的答卷扫描识,且A3答题卡在200dpi分辨率下,其双面扫描的影象文件容量不大于250K,这就确保了在当前互联网带宽不是很宽的情况下依然能够流畅的进行互联网阅卷;本系统不仅支持在局域网、广域网或互联网上进行阅卷,并且提供B/S和C/S结构的可选系统,具有支持通过互联网实现教师在家里阅卷或跨地区学校联考远程网上阅卷功能; 5.分布式设计,轻松实现联考 本系统采用C/S结构,支持分点联合阅卷功能,可以轻松实现与其他同样应用本系统的兄弟单位一起进行联考阅卷。 6.答卷扫描与考生考号、客观题涂点识别同步完成,无须行进行二次识别操作 本系统在答卷扫描的同时即完成客观题答案的准确识别,当扫描完成时,客观题的识别工作即全部完成,有利于及时发现扫描过程中出现的异常情况,便于及时进行查错和纠错操作。如果采用严格定位技术设计的产品,扫描与识别分二次进行,先扫描后识别。 7.答题卷设计灵活,支持多种统计与分析 本系统支持单选、多选的客观题任意混排,不限制客观题答案选项的数量(原则上不少于26个)以及不限制答案的组合方式,同时支持客观题的题目和涂点混排。 本系统也支持主客观题部分的选做题(M选N,M≥N,如2选1、3选2等)评卷及数据处理功能,即系统可以自动识别选做的标识并进行处理;同一大题的不同选题应可以交由不同分组的老师独立评阅;且支持公共答题区域和8字码(七段码)识别,以最节省纸张的方式实现选项较多的选做题。 支持A、B卷的答题卡及常用条形码考生考号的自动识别,同时支持题卡合一和题卡分离的模式。 本系统支持评卷题目按照题组分组阅卷以及统计分析功能,从而实现对文综、理综中单个科目(如:政治、历史、物理、化学等)分科单独统计分析。 8.系统适应性强、容错性好 支持试卷印刷异常的特殊情况处理功能,确保在出现例如:试卷页码漏印、试卷印刷有倾斜、客观题涂点印刷不完整、试卷有小幅褶皱等情况下的正常扫描识别功能。 9.可实现与主流高速扫描仪的无缝对接 本系统设计使用底层协议实现与当前主流的高速扫描仪无缝对接,采用本系统不需要增加额外的图形加速卡,即可实现对答卷的扫描识别速度不低于扫描仪的标称值,实时性达到100%(即:正确识别的答卷扫描识别量 ≧ 扫描仪标称速度 X 实际扫描时间)。 10.支持典型试卷、电子化批注,便于课堂讲评 支持在试卷上做类似于人工阅卷评卷给分的给分标记,在标记时完成登分;试卷评阅的痕迹能以图像的方式保存在计算机系统中,并与阅卷过程中的标记及得分进行合成生成电子图像。 在评卷过程中对典型试卷可随时作标记,阅卷完成后方便调阅,使课堂讲解更直观、生动。
安徽科迅教育装备集团有限公司 2021-08-23
网络阅卷
网络阅卷系统专为教育局用户设计,主要适用于高厉害考试(中考、高考等)阅卷应用,能与中考、高考真正接轨。系统具有答题卡制作、试卷扫描、阅卷、评卷管理控制、成绩统计分析等功能。从答题卡扫描到阅卷,网络阅卷系统不仅能减轻教师阅卷负担,而且能够助力教师更有效地提高阅卷质量和阅卷效率,提高阅卷的准确度与公平性。网络阅卷远程服务中心网络阅卷远程服务中心由网络阅卷系统和服务中心管理平台组成,是专为网络阅卷系统而增设的远程服务部门。用户在本地完成答题卡扫描工作后,其他工作,如考试定义、答题卡模版制作、裁切、成绩统计等,均可交由网络阅卷远程服务中心来完成,从而优化管理过程,减轻工作负担。为什么要选择远程服务中心? 专业、高效、简单、方便、快捷降低阅卷考务工作出错率,减轻用户工作负担用户可远程操作、监控,管理更灵活远程服务无地域限制,节约成本
广州光大教育软件科技股份有限公司 2021-08-23
网络阅卷
实现客观题自动阅卷,主观题网上评卷和成绩数据的统计分析全部在计算机网上进行,特别是统计分析数据可直接在服务器上发布,既可免去人工阅卷方式逐级汇总及上报的麻烦,又可直接供教学讲评、质量分析使用,最大限度实现成绩数据的资源共享,满足领导,教师、学生及家长的需要。
武汉天喻教育科技有限公司 2021-02-01
基于云计算与边缘计算的社会安全事件智慧化立体综合预警与指挥平台
针对上述社会安全事件综合研判的难题,本成果利用系统工程的综合集成研讨方法论,综合公安学、管理科学、计算机科学等相关学科理论、方法与技术,提出了基于多时空线索链的社会安全事件智能综合研判关键技术以及面向社会安全警情事件的警务资源指挥调度方法。 ①基于多时空线索链的社会安全事件智能综合研判关键技术以群体性聚集事件作为典型社会安全事件,构建基于六空间的社会安全事件综合集成研讨厅体系:融合构建“情景数据-元数据-知识-实体模型-形式模型-算子”六空间体系,提出多时空线索链生成技术,抽取知识空间中共性的时空线索链模式;基于知识和数据共同驱动的思想,提出了社会安全事件的研判支持方法,包括基于知识图谱的推理方法、基于相似案例的推理方法、以及基于贝叶斯网络的推理方法等;进而结合专家研判,实现典型社会安全事件智能综合研判。 ②面向社会安全警情事件的警务资源指挥调度方法是在层次任务网络规划(Hierarchical Task Network, HTN)的基础上,实现任务执行时间、空间和资源约束的推理,解决考虑多任务类型、多警种、多出警地点、任务带有时效性、考虑交通和处置时间等实际因素的警务资源调度方案制定问题;进而考虑执行时间等不确定因素的影响,在规划过程中处理不确定性,制定柔性调度方案,使生成的调度方案更好地适应不确定的执行环境。 ③在此上述关键技术基础上,运用系统工程方法,研究了基于云计算与边缘计算的端网云的网络结构、通讯协议及协同计算模型,综合考虑各方面因素对平台体系架构进行了设计,从顶层设计层面解决信息孤岛、资源有限等难题,构建了基于云计算于边缘计算的社会安全事件智慧化立体综合预警与指挥平台。整体技术路线如下图所示: 图 1 社会安全事件智慧化立体综合预警与智慧平台整体技术路线 研制的基于云计算于边缘计算的社会安全事件智慧化立体综合预警与指挥平台,主要由四个系统组成。其中,融合“人、车、物、网、地”的警情大数据支撑平台与公安部门现有的业务系统相对接,关联研发的目标识别与警情事件监测预警结果,实现警情数据的采集、整理和分析。社会安全事件智慧化综合预警与分析系统基于大数据支撑平台提供的公安业务数据、网络舆情信息和研判结果数据等,提供了公安部门需要的事件分析和研判功能。面向社会安全事件的警务资源指挥调度系统基于研判结果,具有领域知识管理、调度方案生成和执行异常识别等功能,为指导指挥员进行调度方案制定提供辅助决策能力。最后,基于研发的系统间及与公安相关业务系统间的互操作模式、资源可伸缩的并发处理技术,由应用集成管理平台提供应用集成和服务集成功能,包括统一的用户管理和认证、工作界面、应用云服务管理等,实现各系统间的有机集成,平台体系架构如下图所示。 图 2 社会安全事件智慧化立体综合预警与指挥平台体系结构 成果相关图片展示: 图 3 社会安全事件智慧化综合预警与分析系统驾驶舱 图 4 时空大数据查询模块 图 5 研判规则管理模块 图 6 预案管理模块
华中科技大学 2023-05-04
高速公路与关联城市快速路交通信息共享与协同控制系统
该项目是863计划项目,现处于实验室研究阶段。项目成果受专利保护。 1、项目概述 本项目针对高速公路进出城路段交通拥堵严重、事故频发,以及高速公路监控系统和城市快速路监控系统各自为政、协同性差的普遍现象,构建了基于互联网的分布式交通特征信息共享平台,实现了不同监控系统的信息共享;借助信息共享平台,系统分析了结合部的动态交通特征,提出了适应不同交通条件的短时交通特征预测技术;采用分层递阶控制和神经网络控制的方法,研发了多匝道的协同控制系统软件,并实现了结合部道路交通系统的微观仿真。 2、技术创新点 在监控系统的信息共享研究方面,初步建立了交通特征信息共享的平台,其中对异构监控系统之间交通特征级信息共享的内容和模式进行了系统分析,对异构信息进行了融合处理,实现了特征级信息的发布。 在短时交通特征预测研究方面,已对京津塘高速公路及北京市快速环路监控系统的海量交通流实测数据进行了特征与关联分析,完成了短时交通特征的预测,并实现了交通拥挤的预判。 在结合部的协同控制方面,利用模糊神经网络的建模和学习方法,对高速公路多匝道控制系统算法进行设计,并进行了控制效果仿真。   3、能为产业解决的关键技术 (1)基于服务水平的特征级交通动态信息融合技术 针对目前高速公路和城市快速路监控系统所采集的交通流基础数据格式和像素级融合技术都有所不同,控制目标参数不统一的现实情况,项目提出的交通特征信息共享平台首先要处理现有高速公路和城市快速路服务水平判定标准不统一的问题,其次需要解决区域交通监控系统的特征级数据融合问题,寻求基于服务水平的动态信息融合技术和方法。 (2)交通特征信息共享平台的设计技术 针对集中式信息共享平台投资大、实施困难的缺点,提出采用成熟的互联网技术,以及分布式技术建立交通信息共享平台,为异构监控系统的信息共享模式提供了一种新的建设思路。不需要增加额外的硬件投资、操作方便,就现有的管理体制来说,也容易实现。 (3)基于关联分析和智能控制技术的短时交通特征预测模型 将时间序列理论与关联理论引入交通状态分析,并根据不同交通条件建立的短时交通预测模型,在很大程度上提高了预测方法的实时性、准确性和可靠性,有利于预测技术的应用和推广。 (4)高速公路和城市快速路结合部实现协同控制的关键技术 基于区域道路交通网络动态信息采集系统数据资源的综合利用与共享,在交通服务水平判定技术的支持下,运用系统论、控制论的思想以及智能交通系统工程的理论方法,实现高速公路和城市快速路结合部的协同控制。 4、相关的行业发展水平,以及同类技术产品或成果比较 目前,我国已建设的交通信息系统中,各子系统基本上是作为一个个分支存在的,不仅子系统自身的数据尚未实现充分融合,集成度很低,而且系统之间存在行政分割问题,异构情况严重;在信息共享平台设计上,大都采用集中式为主,需要新建一个监控总中心,投资大,操作困难。 与本项目所提出的预测思路及预测方法相比,现有预测方法的适用性方面还存在不少缺陷。 目前,我国高速公路和城市快速路交通控制所采取的区域控制策略尚未形成较成熟的控制模式,高速公路和城市快速路的协同控制模式更是处于起步阶段,尚未形成成熟的技术产品。 应用范围: 本课题针对的主要对象是高速公路与城市快速路的结合部,课题研究成果不仅充分利用了现有的道路监控系统硬件资源,节省了建设成本,而且可以满足结合部的交通控制与管理需要,具有较强的应用和推广价值。在实际的应用和推广中,还需进一步扩充和细化协同控制目标,优化大范围内的多匝道协同控制模型及其算法,并对具体的控制策略和控制设施进行详细设计,以提升协同控制的实际效果。 预期效果: 运用系统论和其他相关领域研究的最新成果,探索建立区域高速公路和城市快速路交通信息共享平台的新思路和新方法,并在系统平台的基础上研究协同控制的策略和方法,并形成整套协同控制系统算法和软件。在实践中,研究成果能够得到较好的应用,并且能够部分解决高速公路和城市快速路结合部的交通问题。
北京交通大学 2021-04-13
基于互联网与智能计算的质量远程监控与优化信息化平台
技术优势: 1)通过物联网、云平台实现质量远程监控、安全连锁报警与管理; 2)根据原料工艺操作条件不断变化,优化计算获取最佳操作参数; 3)远程智能系统具有始于感知、精于计算、巧于决策、善于学习功能。 采用物联网和互联网+的信息化技术实现装置、厂级、园区三废净化装置运行质量远程监控与安全保障系统,为企业、园区提供高效的技术服务,解决化工、制药行业实际运行存在的有机物达标排放难题,满足国家当前“环保法”、“水十条”严格指标要求,在装置节能与污染物零排放面取得明显经济和社会效益。
南京工业大学 2021-01-12
基于智能物联网/5G的信息采集与应用
数据采集技术 可穿戴传感器是接触式传感器。加速度传感器测量运动加速度,心率、血压和血氧传感器检测心率、血压等生理数据。可将不同的传感器集成在智能手环、脚环、腰带等可穿戴设备中,以实现加速度、角速度和生理等数据的采集;物体和环境传感器是非接触式传感器,常见的物体传感器基于RFID技术,通常用于身份、物流等信息的识别。常见的环境传感器有声音传感器、磁力计、气压传感器、温湿度传感器和PM 2.5传感器等,实现各种环境信息的采集。 多模态传输技术 LPWAN (Low-Power Wide-Area Network,低功率广域网络) 在LPWAN技术出现以前,通信技术已经有多种类别,短距离的有wifi、蓝牙、zigbee等,长距离的则有2G、3G、4G、5G等,但是如果把这些无线通信技术按照功耗与传输距离这两个维度划分的话可以发现在功耗低、距离远这个范围的技术还欠缺,而LPWAN技术的出现正好弥补了这个短板。         LPWAN可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱的基于蜂窝组网的通信技术,比如eMTC、LTE Cat-1、NB-IoT等。LPWAN 专为低带宽、低功耗、远距离、大量连接的物联网应用而设计。 最具前景的LPWAN技术——NB-IoT和LoRa: 物联网(IoT)应用需要考虑诸多因素,例如节点成本、网络成本、电池寿命、数据传输速率(吞吐率)、延迟、移动性、网络覆盖范围以及部署类型等,可以说没有一种技术可以满足IoT所有的需求。NB-IoT和LoRa两种技术具有不同的技术和商业特性,也是最有发展前景的两个低功耗广域网通信技术。这两种LPWAN技术都有覆盖广、连接多、速率低、成本低、功耗小等特点,都适合低功耗物联网应用。 LoRa (Long  Range):     一个LoRaWAN网络架构中包含了终端、基站、NS(网络服务器)、应用服务器这四个部分。基站和终端之间采用星型网络拓扑,由于LoRa的长距离特性,它们之间得以使用单跳传输,终端节点可以同时发送信息给多个基站。基站则对NS和终端之间的LoRaWAN协议数据做转发处理,将LoRaWAN数据分别承载在了LoRa射频传输和TCP/IP上。 NB-IoT(Narrow Band Internet of Things) NB-IoT构建基于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络。NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。 NB-IoT具备四大特点:一是广覆盖,将提供改进的室内覆盖,在同样的频段下,NB-IoT比现有的LTE网络增益提升20dB,覆盖面积扩大100倍;二是具备支撑海量连接的能力,NB-IoT一个扇区能够支持10万个连接,支持低延时敏感度、超低的设备成本、低设备功耗和优化的网络架构;三是更低功耗,NB-IoT终端模块的待机时间可长达10年;四是更低的模块成本,企业预期的单个接连模块不超过5美元。 数据分析技术 人工智能研究的各个分支,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法(深度学习)的出现,人工智能开始大爆发。机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。深度学习本来并不是一种独立的学习方法,但由于近几年该领域发展迅猛,一些其特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。深度学习的各种算法已成为行为识别主要应用的技术,传感器采集的各类信号,通过卷积神经网络、循环神经网络等分类,识别出坐、走、跑、跳、上下楼等日常行为,也可以实现对被监护者摔倒等异常行为的检测。
山东大学 2021-05-11
基于智能物联网/5G的信息采集与应用
项目成果/简介:数据采集技术可穿戴传感器是接触式传感器。加速度传感器测量运动加速度,心率、血压和血氧传感器检测心率、血压等生理数据。可将不同的传感器集成在智能手环、脚环、腰带等可穿戴设备中,以实现加速度、角速度和生理等数据的采集;物体和环境传感器是非接触式传感器,常见的物体传感器基于RFID技术,通常用于身份、物流等信息的识别。常见的环境传感器有声音传感器、磁力计、气压传感器、温湿度传感器和PM 2.5传感器等,实现各种环境信息的采集。多模态传输技术LPWAN (Low-Power Wide-Area Network,低功率广域网络)在LPWAN技术出现以前,通信技术已经有多种类别,短距离的有wifi、蓝牙、zigbee等,长距离的则有2G、3G、4G、5G等,但是如果把这些无线通信技术按照功耗与传输距离这两个维度划分的话可以发现在功耗低、距离远这个范围的技术还欠缺,而LPWAN技术的出现正好弥补了这个短板。       LPWAN可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱的基于蜂窝组网的通信技术,比如eMTC、LTE Cat-1、NB-IoT等。LPWAN 专为低带宽、低功耗、远距离、大量连接的物联网应用而设计。最具前景的LPWAN技术——NB-IoT和LoRa:物联网(IoT)应用需要考虑诸多因素,例如节点成本、网络成本、电池寿命、数据传输速率(吞吐率)、延迟、移动性、网络覆盖范围以及部署类型等,可以说没有一种技术可以满足IoT所有的需求。NB-IoT和LoRa两种技术具有不同的技术和商业特性,也是最有发展前景的两个低功耗广域网通信技术。这两种LPWAN技术都有覆盖广、连接多、速率低、成本低、功耗小等特点,都适合低功耗物联网应用。LoRa (Long Range):   一个LoRaWAN网络架构中包含了终端、基站、NS(网络服务器)、应用服务器这四个部分。基站和终端之间采用星型网络拓扑,由于LoRa的长距离特性,它们之间得以使用单跳传输,终端节点可以同时发送信息给多个基站。基站则对NS和终端之间的LoRaWAN协议数据做转发处理,将LoRaWAN数据分别承载在了LoRa射频传输和TCP/IP上。NB-IoT(Narrow Band Internet of Things)NB-IoT构建基于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络。NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。NB-IoT具备四大特点:一是广覆盖,将提供改进的室内覆盖,在同样的频段下,NB-IoT比现有的LTE网络增益提升20dB,覆盖面积扩大100倍;二是具备支撑海量连接的能力,NB-IoT一个扇区能够支持10万个连接,支持低延时敏感度、超低的设备成本、低设备功耗和优化的网络架构;三是更低功耗,NB-IoT终端模块的待机时间可长达10年;四是更低的模块成本,企业预期的单个接连模块不超过5美元。数据分析技术人工智能研究的各个分支,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法(深度学习)的出现,人工智能开始大爆发。机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。深度学习本来并不是一种独立的学习方法,但由于近几年该领域发展迅猛,一些其特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。深度学习的各种算法已成为行为识别主要应用的技术,传感器采集的各类信号,通过卷积神经网络、循环神经网络等分类,识别出坐、走、跑、跳、上下楼等日常行为,也可以实现对被监护者摔倒等异常行为的检测。应用范围:家居智慧控制,提高舒适度:家庭生活状态统计和日常需求预测与推荐;多模态行为分析和数据采集和传输系统;多模态行为数据采集和分析平台;基于LoRaWAN/5G的工厂环境、农业大棚等环境监测系统。技术成熟度:通过中试
山东大学 2021-04-10
首页 上一页 1 2
  • ...
  • 39 40 41
  • ...
  • 466 467 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1