高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
锡酸锑纳米线复合电子封装材料
简介:本发明公开了一种锡酸锑纳米线复合电子封装材料,属于结构材料技术领域。本发明锡酸锑纳米线复合电子封装材料的质量百分比组成如下:锡酸锑纳米线65‑80%、聚乙烯醇3‑5%、聚苯乙烯3‑5%、丙烯酸‑丙烯酸酯‑磺酸盐共聚物0.05‑0.5%、异丙醇铝3‑6%、聚偏氟乙烯7‑14%、水3‑5%,锡酸锑纳米线的直径为50nm、长度为20‑30μm。本发明提供的锡酸锑纳米线复合电子封装材料具有耐老化及耐腐蚀性能优良、易加工、绝缘性好、热膨胀系数小、导热系数高及制备温度低等特点,在电子封装领域具有良好的应用前景。
安徽工业大学 2021-04-13
天然脂肪酸甲酯催化加氢技术
项目申请人所在研发团队多年来致力于绿色化学和工程研究,经过多年努力,已开发出一系列高活性的负载型金属催化剂及其衍生催化剂。 本项目针对天然脂肪酸甲酯研制具有很强的抗硫性能的新型高活性纳米金属镍和磷化镍催化剂,同时开发先进的固定床催化加氢反应技术来进行天然脂肪酸甲酯的加氢饱和研究,促进生产进步,减少污染,具有良好的工业化应用前景,不仅具有显著的经济效益,而且具有显著的社会和环保效益。与本
南京大学 2021-04-14
蚯蚓氨基酸系列农用生化产品成果
一、成果简介 该项目是利用蚯蚓蛋白酶解技术,研制的氨基酸系列农用生化制剂。该项成果整体居国内领先水平,技术产品填补国内空白,其中蚯蚓氨基酸酶解、蚯蚓植酸酶和抗菌肽研究达到国际先进水平。 二、技术特点
中国农业大学 2021-04-14
揭示丙酮酸循环为细菌提供能量
提出了细菌代谢状态决定细菌耐药性,建立了通过关键代谢物逆转细菌耐药性以控制耐药菌的新策略(Peng et al., Cell Metabolism, 2015)。在寻找新的逆转细菌耐药性的代谢物质中,发现谷氨酸(glutamate)可以逆转细菌耐药性。其在进入细菌后,不是遵循已知的TCA循环进行代谢(柠檬酸-异柠檬酸-酮戊二酸-琥珀酸辅酶A-琥珀酸-延胡索酸-苹果酸-草酰乙酸-柠檬酸),而是在草酰乙酸的基础上逐步生成磷酸烯醇丙酮酸、丙酮酸、乙酰辅酶A再从柠檬酸进入三羧酸循环,即柠檬酸-异柠檬酸-酮戊二酸-琥珀酸辅酶A-琥珀酸-延胡索酸-苹果酸-草酰乙酸-磷酸烯醇丙酮酸-丙酮酸-乙酰辅酶A-柠檬酸,形成一个全新的循环,故命名为丙酮酸循环(P循环)。进一步的试验证明,P循环是一条正常的生物有氧氧化的最终代谢途径。P循环消耗草酰乙酸, 而TCA循环消耗乙酰辅酶A。糖类、脂类和氨基酸可以直接进入P循环,而糖类和脂类进入TCA循环需要先转变为乙酰辅酶A,说明P循环才利于糖的利用。更重要的是,将P循环多于TCA循环的基因或酶进行相应的缺失或抑制,其对TCA循环的影响与缺失或抑制TCA循环中的基因或酶的影响一致,说明TCA循环耦合在P循环中。综上所述,该研究的创新点主要包括:1)P循环对于调控生物体内能量平衡发挥着重要的作用;2)TCA循环为P循环提供草酰乙酸,是P循环的一条重要旁路;3)P循环调控TCA循环;4)P循环在代谢物逆转细菌耐药性起到关键作用。
中山大学 2021-04-13
塑胶跑道丙烯酸硅PU工程
产品详细介绍   广州市奥力生体育设施有限公司是集设计、开发、生产、销售、铺装及售后服务于一体的专业运动场设施营造公司,主要从事项目有塑胶跑道、篮球场、网球场、排球场、羽毛球场,人造草坪,室内运动木地板等。公司积极推行“广纳良才”的企业策略,现拥有多名长期从事康体设施研究、创新、开发的专家、学者及工程师等专业人才,技术力量雄厚,通过引进和吸收国外先进的生产技术,并在此基础上进行改造和创新,不断扩大规模,以新型环保产品赢得市场,回报社会。   “奥力生牌”塑胶球场按中国国家标准GB/T14833-93组织生产、铺装,并制定了适应不同环境的内控指标,产品完全符合国际田联、国家体委对运动球场珠严格要求。塑胶球场铺面现主要有红、绿、蓝、黄等多种颜色,并可按用户要求和使用环境制成其他各种不同颜色。    现生产基地占地12000平方米,具有年产5000吨聚氨酯材料的生产能力和年铺装40万平方米塑胶跑道及塑胶球场面层的施工能力,所生产的高品质塑胶地面铺装材料以流平性好、物理性能指标高、环保性好深受广大 用户和合作单位的称赞。运动球场地面系列产品:1)PU全塑型球场面层超强耐磨防滑,高弹性,一体成型面层,厚度均匀,不鼓泡,耐老化,色彩鲜艳,适用于各种比赛场地,维护方便。2)PU复合型球场面层抗紫外线,有效避免运动伤害,强韧的弹性层及缓冲层,抗钉鞋磨损,软硬适中,耐磨性佳。3)EPDM透气型球场面层美观耐用,全天候使用环保无公害,不褪色,不掉颗粒、不积水、采用进口先进机械施工,平整度极佳
广州市奥力生体育设施有限公司 2021-08-23
城市污泥厌氧发酵产酸及产酸发酵液强化污水生物脱氮除磷技 术
将城市污水处理厂的脱水污泥利用中水调制到适当浓度,然后对污泥进行热碱预处理,使污泥细胞破壁,充分释碳。在中温条件下进行碱性厌氧发酵生产VFAs(挥发性脂肪酸),发酵后污泥在利用木屑和氯化镁联合调理后通过板框压滤机进行高干脱水实现发酵液的回收并去除发酵液中部分的氮和磷。回收得到的富含 VFAs 的发酵液添加到城市污水处理厂的生物处理单元,作为补充碳源,强化污水的生物脱氮除磷,从而达到去除污染物的目的。具体技术内容包括污泥预处理、污泥厌氧发酵产酸、污泥深度脱水以及有机酸强化污水脱氮除磷技术。
江南大学 2021-04-13
合成气一步法制备乙醇和低碳醇催化剂
"低碳醇通常是指碳数在二及以上的醇,其往往可直接作为汽车燃料,也可作为汽油添加剂而加入汽油中,提高汽油辛烷值,而长碳链醇(主要是C6+醇)是增塑剂、洗涤剂、润滑油合成过程中重要的中间体。近年来,通过合成气一步法制备低碳醇的催化剂分为四类,即Rh基催化剂,甲醇修饰催化剂,费托合成修饰催化剂,Mo基催化剂。其中Rh基催化剂具有最高的醇选择性,但其较高的价格以及储量的稀少而限制了其商业应用;甲醇修饰的催化剂其醇选择性较高,但产物主要是甲醇、异丁醇,C2+-OH选择性较低;Mo基催化剂耐硫,但其活性较低,甲烷化严重,反应条件苛刻;费托修饰的催化剂,虽然其碳链增长能力较强,但有大量的烷烃生成,C2+-OH选择性较低。已将碳纳米管应用于合成气制备低碳醇的催化剂,其在高压微反评价装置,300~350 C,6~10 MPa,3000~6000 mL/(g•h)的反应条件下,加氢产物中总醇醚的碳基选择性≥60%,乙醇选择性≥30%,总醇醚时空产率≥100 mg/(g•h),乙醇≥50 mg/(g•h);催化剂稳定性考核>1000 h。 项目已经完成具有自主知识产权的低碳醇催化剂的研发,并成功完成了百
厦门大学 2021-04-10
喹乙醇在食品动物的代谢残留规律与食品安全管控技术研究
该项目针对现行国家认定的喹乙醇残留标示物3-甲基喹噁啉-2-羧酸,首次制出标准品,研究制订了畜禽和水产动物可食性组织及产品中残留检测方法标准2种,在国内外首次研制出基于抗体的ELISA试剂盒及试纸条3种。这些方法标准及产品已纳入国家兽药残留监控计划,在全国得到广泛应用。采用放射性示踪和液质联用技术,在国内外首次全面系统地研究了喹乙醇在大鼠、猪、鸡和鱼体内的吸收、分布、代谢和排泄规律,发现了9种新代谢产物,重新确定了喹乙醇在猪、鸡和鱼体内的残留标示物为脱二氧喹乙醇,残留靶组织为肾脏。基于上述研究结果,合成了6种新的喹乙醇主要残留物和残留标示物标准品,建立了喹乙醇及其主要残留物的化学定量分析技术,研制成功了新残留标示物的单克隆抗体,组装了ELISA检测试剂盒。鉴定专家一致认为该研究成果达到国际领先水平。 残留标示物与靶组织的确定奠定了喹乙醇残留监控的理论基础,标准品合成与检测技术的建立解决了喹乙醇残留监控的技术难题。该项目对解决兽药残留与食品安全意义重大。具有较广阔的应用前景。 成果完成时间:2015年
华中农业大学 2021-01-12
木材用高分子改性多功能高效阻聚剂
项目简介:本项目采用葡萄糖改性的单体聚合,制备含糖聚合物,与具有阻燃性能、防腐、杀菌等功效的试剂组合,制备出高效的多功能阻燃剂,与目前市场上的简单无机阻燃剂相比,具有耐久性,高效性。本技术是在国外最新专利的基础上,加以改进后开发的,正在申报发明专利。改性高分子可以使得复配的其他助剂均匀分散,牢固结合在木材的表面,更加有效地浸入木材的表层,达到更好的效果。可用于板材、片材及复合材料。主要原料: 改性葡萄糖、环氧氯丙烷、丙烯酸酯、助剂、催化剂主要设备:普通反应釜及相关的配套设备小试技术,可技术转移及合作中试开发联系人: 河北工业大学化工学院 王家喜 13389075337
河北工业大学 2021-04-13
聚-γ-谷氨酸发酵生产及其在农业中的应用
中试阶段/n成果简介:目前,农业生产减肥增效、节能降耗、减少环境污染是人们关注的热点。聚γ-谷氨酸(简称“γ-PGA”)作为一种绿色生物大分子材料,不仅可使作物增产10-30%,节肥10-20%,还可提高作物品质和作物抗病耐旱能力。华中农业大学农业微生物学国家重点实验室率先在国际上开展了γ-PGA在农作物栽培中的应用,已申请γ-PGA发酵及γ-PGA在农业领域的应用等5项中国发明专利,其中获得3项发明专利授权。三项相关课题鉴定成果分别于2007年,2008年,2009年通过湖北省科技厅组织的专家鉴定
华中农业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 14 15 16
  • ...
  • 42 43 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1