高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
钙钛矿太阳能电池中非辐射复合能量损失的研究
钙钛矿太阳能电池制备工艺简单,成本低廉。近年来,该类太阳能电池因其快速增长的光电转换效率和逐步提升的器件稳定性,吸引了学术界和产业界的广泛关注,为光伏领域带来了新的机遇。然而,由于钙钛矿太阳能电池中存在非辐射复合损失,所以目前的光电转换效率依然低于肖克利-奎塞尔(Shockley-Queisser)理论所定义的极限效率。因此,最大化降低钙钛矿太阳能电池的非辐射复合损失是进一步提升电池器件效率的未来研究重点。 鉴于此,研究团队基于已有的研究基础,对“最大化降低钙钛矿太阳能电池的非辐射复合损失”这一论题进行深入探讨和系统总结。该综述文章主要包括以下几个方面:首先,介绍了钙钛矿太阳能电池中非辐射复合的起源,并详细讨论了非辐射复合损失的定量化测试方法;其次,系统总结了在降低非辐射复合损失方面的最近研究进展;再次,依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的最高光电转换效率进行了科学预测;最后,在展望部分,前瞻性地指出了最大化降低非辐射复合损失的未来努力方向。图1. 金属卤化物钙钛矿活性层内的电荷载流子产生与复合动力学机制 在理想的金属卤化物钙钛矿半导体材料中,所有的光生电子和空穴最终将通过发射光子的方式进行复合(即:辐射复合)。然而,在实际的钙钛矿太阳能电池中存在大量的非辐射复合通道(如图1所示),绝大部分光生载流子将优先通过其他非辐射途径进行复合(例如,缺陷辅助复合,俄歇复合,界面诱导复合,电声耦合,带尾态复合等)。这些非辐射复合损失过程极大降低了电池在稳态下的光生载流子浓度,从而减小了金属卤化物钙钛矿层中准费米能级劈裂的能级差,最终造成钙钛矿太阳能电池较大的电压损失。因此,最大化降低或抑制这些非辐射复合通道是提升器件开路电压和光电转换效率的关键。 针对各种非辐射复合通道,该综述首先介绍了目前量化分析非辐射复合损失的常规测试技术以及测试要点,如图2所示。图2. 量化钙钛矿薄膜和完整器件中非辐射复合损失的表征技术 随后,结合当前研究现状,进一步梳理了近年来在降低非辐射复合损失方面取得的一系列重要进展。值得一提的是,该研究团队去年在《Science》杂志上报道的基于溶液二次生长方法构建渐变结的策略(如图3所示),在降低反式钙钛矿太阳能电池的非辐射复合损失方面效果显著(Science 360, 1442-1446)。此后,一系列研究报道显示,相似的策略在正式常规结构钙钛矿太阳能电池和全无机钙钛矿太阳能电池中也可以获得正向的实验结果。由此说明,在金属卤化物钙钛矿半导体材料中构建有效的渐变结对后续降低非辐射复合损失具有非常重要的借鉴价值。图3. 渐变结钙钛矿太阳能电池器件结构和渐变结的时间分辨光谱 此外,该综述还以当前最高效率的砷化镓太阳能电池为参照,先假定钙钛矿太阳能电池的非辐射复合损失与砷化镓太阳能电池的情形一致,再依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的性能参数进行科学预测,进而给出电池器件所能达到的最高光电转换效率,如图4所示。图4. 当钙钛矿太阳能电池的非辐射复合损失与当前最高效率砷化镓太阳能电池的情况相同时,单结钙钛矿太阳能电池可实现的最优器件性能参数 最后,该综述也指出,目前提升器件性能的两条主要途径是最优化光子俘获和最大化降低非辐射复合损失。如果能将二者进行有效整合,探索更可靠的协同优化策略,这可能会是将器件光电转换效率提升至接近理论极限的可行方案。为此,综述也对一些未来的努力方向进行了展望。 总的来说,该综述为最大程度地降低钙钛矿太阳能电池的非辐射复合损失提供了理论总结,也为开展实验工作提供了参考借鉴,对进一步提升电池效率,推动该类电池产业化应用有重要意义。
北京大学 2021-04-11
一种基于纳米压电纤维的柔性能量捕获器件及其制备方法
本发明公开了一种基于纳米压电纤维的柔性能量捕获器件及其制备方法。所述器件自下而上依次包括:柔性基材、电极层、压电纤维层、保护层;所述柔性基材为柔性绝缘塑料薄膜;所述压电纤维层为 PVDF 纤维。通过采用柔性基材,采用照相制版工艺制备梳状电极,并选择合适的静电纺丝参数沉积 PVDF 压电纤维,无需再对压电纤维进行极化,使纤维整齐排列、减小纤维缺陷,能够简化纳米压电纤维能量捕获器件制备工艺,提高能量转换效率,尤其是对弯曲运动机械能的捕获效果。
华中科技大学 2021-04-14
纳米新能源材料能量转化的新规律及在高端电池中的应用
课题从事纳米新能源材料能量转化的新规律及在高端电池中的应用基础研究,在金属-空气电池、锂离子电池关键材料与技术以及能源清洁高效利用等领域开展工作,制备了一系列的金属与合金、金属氧化物、金属硫化物纳米材料以及无机/有机复合材料等,研究了纳/微米材料组成、结构、形貌与电极性能之间的关系,考察了材料高效储能的化学热力学、动力学等性能,并开展其能量转换与储存新规律的探索研究,探讨解决提升高能化学电源的容量、功率与寿命的有效途径。为纳米新能源材料的制备、表征及在能源领域的应用打下了基础。 研究
南开大学 2021-04-14
一种公路收费站减速带能量回收发电系统
一种公路收费站减速带能量回收发电系统,通过减速带下方的板簧上的垂向连杆与扇形齿轮相连;再由扇形齿轮分别驱动内啮合棘轮机构一、内啮合棘轮机构二,带动发电机一、发电机二分别在减速带下压和恢复过程中发电。该种发电系统结构简单、成本低、使用安全可靠、发电效率高、不污染环境。
西南交通大学 2016-10-20
一种基于山脊能量校正的山地中带状地下目标的探测方法
本发明公开了一种通过检测山地环境中山脊位置并进行能量校正来提高对山地环境中带状地下目标的探测、识别、定位方法。该方法属于模式识别、遥感技术、地形分析的交叉领域。带状地下目标的·758·热场与山体的热场不同能产生能量异常,而山脊的热岛效应也会造成山体能量异常,但该异常本质上与带状地下目标的能量异常模式不同,所以本发明意在通过消除地形中的山脊所产生的热体效应对带状地下目标表现出的微弱能量异常模式的影响,达到
华中科技大学 2021-04-14
高能量密度纳米复合介电储能材料及脉冲电容器
一、项目分类 关键核心技术突破 二、成果简介 随着电力需求的不断增长,高性能储能装置对现代社会的可持续发展起着至关重要的作用。与超级电容器和锂电池相比,脉冲储能电介质电容器拥有超高的可释放功率密度,高的操作电压、极快的充放电速率以及长的循环寿命,是重要的新型功率储能器件,在新能源汽车、高端医疗器械、智能电网调频、可控核聚变、电磁炮等高功率脉冲技术的军民领域有着重要应用。
华中科技大学 2022-07-26
基于燃料电池增程器时滞特性的瞬时优化能量管理策略改进
本项目拟进一步技术升级转化的核心技术科技成果“基于燃料电池增程器时滞特性的瞬时优化能量管理策略”来源于“十二五”863计划《燃料电池轿车动力系统技术平台研究与开发》(2011AA11A265)项目。围绕该核心技术,项目申请人已申请发明专利7项,其中4项已授权,发表相关学术论文二十余篇,并与上海大众汽车有限公司开展了初步的技术转化合作。1 技术简介  针对燃料电池电动汽车具有多个车载能量源这一特点,申请人从综合考虑动力蓄电池和燃料电池增程器协调工作的角度出发,提出了一种源于ECMS策略(等效燃料最小策略)的基于损失功率最小算法(minimum loss power algorithm,MLPA)的瞬时优化能量管理策略。该策略算法思想为,基于试验得到的各关键部件效率特性图,构造动力蓄电池、燃料电池、DC/DC等关键部件在每一时间步长内的损失功率函数,这些部件损失功率函数在每一时间步长内的线性叠加构成了多能量源动力系统损失功率指标函数,通过使该指标函数在每一时间步长取值最小(系统效率最高)来确定燃料电池增程器功率输出。图1为该控制策略导出的燃料电池实时功率输出优化控制曲面。 通过仿真及实车转毂试验台验证发现该策略具有以下优点,如图2-3所示:1)该MLPA瞬时优化能量策略对工况适应性强,多种常见工况下(NEDC,UDDS,HWFET,匀速工况)经济性优于传统能量策略。2)多种常见工况下,该MLPA瞬时优化能量管理策略均能够控制燃料电池功率输出变化平缓,实现了“浅充浅放”,有利于燃料电池以及蓄电池的寿命保护。
同济大学 2021-04-11
一种考虑不确定性的结构瞬态统计能量响应预示方法
本发明提供了一种考虑不确定性的结构瞬态统计能量响应预示方法,相比于传统瞬态统计能量方法仅能针对确定性结构进行动响应预示,未考虑结构参数随机性、测量误差等不确定性因素的问题,本发明通过区间方法对结构的不确定性进行表征,考虑了不确定性对结构子系统间的能量传递和耗散的影响,基于能量控制方程建立了更为精准的结构各子系统瞬态能量的表达式,基于泰勒展开技术将其子系统瞬态能量的表达式转化为适合区间计算的多项式形式,从而将瞬态统计能量分析方法推广应用到了不确定性结构的动力学响应分析,拓展了目前瞬态统计能量分析方法的研究范围,具有重要的工程应用价值。
东南大学 2021-04-11
基于过渡金属基化合物的高能量密度超级电容器研发
超级电容器是一种新型绿色储能器件,拥有比功率大、充放电效率高, 寿命长等优点,在低碳经济时代展现出巨大应用前景,已经被广泛应用于电 子产品、电动汽车、混合电动汽车、无线通讯设施、信号监控、太阳能及风 力发电等领域。开发具有高能量、高循环性和低成本的超级电容器是该领域 未来重要研究之一。电极材料作为超级电容器的核心组成部分,对其储能 性能有着至关重要的影响,而具有高理论容量、低价格的过渡金属基化合物 (Fe、Co、Ni)是实现高容量、低成本超级电容器首选的电极材料。以过渡金 属基化合物为主要研究对象,对其组分及结构进行了调控,通过储能性能测 试及储能机理分析,为开发高性能、低成本的活性电极材料提供实验依据。 这一研究的开展,给组装超高能量密度的超级电容器并使其从实验室走向我们 的日常生活带来了新的前景。1. 先进性及产业化前景:提高性能、降低成本一直以来都是超级电容器发展的 主旋律,其中能量密度低是超级电容器发展面临的主要问题,因此开发出具 有高能量、成本低的超级电容器迫在眉睫。就提高性能而言,超级电容器的 电极改进是重点,主要途径是通过提高电压窗口和提高电极材料的比电容。目前针对超级电容器电极材料的研究主要集中在:(1)改进现有的电极材料;(2)开发新型电极材料;(3)改进生产工艺,实现低成本化。目前在全球范 围内达到工业化生产水平的超级电容器基本都是以双电层为储能机制的活性 碳基超级电容器,而以贋电容为储能机制的超级电容器尚处于实验室开发阶 段,因此超级电容器还有很大的发展空间。2. 对所在行业和关联产业发展和转型升级的影响:根据超级电容器的容量大小 和功率密度,可以将其用作后备电源、替换电源和主电源。当主电源发生故障 而不能正常使用时,超级电容器便起到后备补充作用,它具有寿命长、充放电快 和环境适应性强等优点。当用作替换电源时,主要应用于对环境变化有特殊要 求的场合,例如白天太阳能提供电源并对超级电容器充电,晩上则由超级电 容器提供电源。作为主电源时,主要利用超级电容的大功率密度,一般是一tin个或几个超级电容器通过一定的方式连接起来持续释放几毫秒至几秒的大电 流,放电之后,再由低功率的电源对其充电。3.   市场分析:根据IDTechEX数据统计,2014年超级电容器全球市场规模为11 亿美元,预计到2018年,超级电容器全球市场规模将达到32亿美元,年复合 增长率为31%,并预测将会以此速度预计到2018年,超级电容器全球市场规模 将达到32亿美元,年复合增长率为31%,并预测将会以此速度继续增长。我国 将“超级电容器关键材料的研究和制备技术"列入到《国家中长期科学和技 术发展纲要(2006-2020年)》,作为能源领域中的前沿技术之一。有数据显示, 2015年国内超电市场规模已经超过了 70亿元,因此,在这样的一个大背景下, 研究新材料以开发具有超高能量密度的超级电容器具有非常大的市场前景。
重庆大学 2021-04-11
一种基于车轮的电动汽车行驶中无线能量供能系统
本发明公开了一种基于车轮的电动汽车行驶中无线能量供能系统。包括安装在车辆车轮上的能量接收组件和安装在行车道两旁的能量发射组件,多个能量发射组件沿行驶方向间隔地布置在行车道上,通过能量发射组件通电在行车道两旁产生交变磁场,车辆带有能量接收组件的车轮在交变磁场中行驶产生电能为电动汽车供电;利用电磁感应原理收集行车道两侧发射组件发送的能量,在车轮内能量接收组件收集的能量通过电滑环输入车体内供给电池和电动机,给车辆充电并驱动车辆不间断行驶。本发明对车辆的框架结构尺寸和底盘高度等影响小,不需要改造路面,具有接收效率高、系统部署简单、车辆适用性强的特点,可用在电动公交等系统中,促进节能环保。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 12 13 14 15 16 17 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1