高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
呼吸系统模型
1、参照人体解剖标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
消化系统模型
1、参照人体解剖标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
高校智慧资助系统
建设智教智慧资助系统,通过其高效协同的后台分类处置能力,把高校学工资助事项进行整合和业务流程的约简化处理,运用大数据打通“最后一公里”,将线下的业务操作剥离开实体大厅转化为线上业务,实现高校学生资助工作的无纸化办公,让学生真正实现“最多跑一次”。 管理员可以灵活设定经困生等级(比如一般困难、困难、特别困难等)。 管理教师可以根据学校的经困生管理办法灵活设定经困生认定条件,在对应的条件下可以设置多条困难条件类型及对应的权重值、限制条件。 管理员可以灵活设定经困生申请计划,包括起止时间、对应认定条件、申报条件参数设置、申报对象。 学生通过移动端进行在线填写经困生申请材料,提交后系统可根据管理员设定的经困生等级条件自动给审核人员推荐申请经困生等级并可以手动调整,学生提交后可以实时查看审核进度。 班主任可以根据系统推荐的经困生等级自行根据实际条件进行手动确认等级,并保留推荐等级和班主任确认等级查询痕迹。 经困生认定条件需具备权重分配方案和认定版本的统一联动管理。 二级学院可以根据权限设置批量打包下载学生上传的经困生证明文件,并以学号+姓名方式保存。
吉林省智教软件有限责任公司 2025-05-16
高校报修管理系统
智教高校报修管理系统优化校园设施维修流程,提升服务效率与质量,满足学校师生及后勤管理部门的需求,维修完成后,能对维修服务质量(如维修效果、维修人员态度)进行打分评价,并可填写反馈意见,以便学校改进服务。 教师、学生可以通过手机端,点击报修服务、我要报修后,可以根据实际报修情况进行问题描述、上传图片等。学生可以实时跟踪维修进度,并对维修结果进行线上打分、评价。
吉林省智教软件有限责任公司 2025-05-16
VR心理放松系统
VR心理放松系统 功能介绍:1、 用户系统:独立的来访者管理体系,详细的个人档案记录,辅助量表评测体系,生物反馈数据、实时语音记录、单次诊疗记录、单次自评量表等多项数据的传输与记录;单次训练记录带有时间信息独立保存,可实现同一训练不同时段的跨越对比。2、 模块系统:多种功能的训练模块可供选择——肌肉渐进式放松训练:提供多种身临其境的立体放松场景和自主选择的视角模式,提供详细的练习指导语及放松音乐,使来访者以循序渐进的方式完成放松练习,消除身体和心理的紧张和焦虑情绪。深呼吸放松训练:提供多种身临其境的立体放松场景和自主选择的视角模式,提供详细的练习指导语及放松音乐,并提供可视化的呼吸信号配合来访者的练习,使来访者更轻松和舒适的完成放松练习,消除身体和心理的紧张和焦虑情绪。快速放松训练:提供多种身临其境的立体放松场景和自主选择的视角模式,提供特定的快速放松指导语,帮助来访者通过反复的练习可以实现快速放松,可以更有效的缓解各种生活中的压力和紧张情绪。
北京京师慧智科技有限公司 2025-05-22
基于智能物联网/5G的信息采集与应用
数据采集技术 可穿戴传感器是接触式传感器。加速度传感器测量运动加速度,心率、血压和血氧传感器检测心率、血压等生理数据。可将不同的传感器集成在智能手环、脚环、腰带等可穿戴设备中,以实现加速度、角速度和生理等数据的采集;物体和环境传感器是非接触式传感器,常见的物体传感器基于RFID技术,通常用于身份、物流等信息的识别。常见的环境传感器有声音传感器、磁力计、气压传感器、温湿度传感器和PM 2.5传感器等,实现各种环境信息的采集。 多模态传输技术 LPWAN (Low-Power Wide-Area Network,低功率广域网络) 在LPWAN技术出现以前,通信技术已经有多种类别,短距离的有wifi、蓝牙、zigbee等,长距离的则有2G、3G、4G、5G等,但是如果把这些无线通信技术按照功耗与传输距离这两个维度划分的话可以发现在功耗低、距离远这个范围的技术还欠缺,而LPWAN技术的出现正好弥补了这个短板。         LPWAN可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱的基于蜂窝组网的通信技术,比如eMTC、LTE Cat-1、NB-IoT等。LPWAN 专为低带宽、低功耗、远距离、大量连接的物联网应用而设计。 最具前景的LPWAN技术——NB-IoT和LoRa: 物联网(IoT)应用需要考虑诸多因素,例如节点成本、网络成本、电池寿命、数据传输速率(吞吐率)、延迟、移动性、网络覆盖范围以及部署类型等,可以说没有一种技术可以满足IoT所有的需求。NB-IoT和LoRa两种技术具有不同的技术和商业特性,也是最有发展前景的两个低功耗广域网通信技术。这两种LPWAN技术都有覆盖广、连接多、速率低、成本低、功耗小等特点,都适合低功耗物联网应用。 LoRa (Long  Range):     一个LoRaWAN网络架构中包含了终端、基站、NS(网络服务器)、应用服务器这四个部分。基站和终端之间采用星型网络拓扑,由于LoRa的长距离特性,它们之间得以使用单跳传输,终端节点可以同时发送信息给多个基站。基站则对NS和终端之间的LoRaWAN协议数据做转发处理,将LoRaWAN数据分别承载在了LoRa射频传输和TCP/IP上。 NB-IoT(Narrow Band Internet of Things) NB-IoT构建基于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络。NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。 NB-IoT具备四大特点:一是广覆盖,将提供改进的室内覆盖,在同样的频段下,NB-IoT比现有的LTE网络增益提升20dB,覆盖面积扩大100倍;二是具备支撑海量连接的能力,NB-IoT一个扇区能够支持10万个连接,支持低延时敏感度、超低的设备成本、低设备功耗和优化的网络架构;三是更低功耗,NB-IoT终端模块的待机时间可长达10年;四是更低的模块成本,企业预期的单个接连模块不超过5美元。 数据分析技术 人工智能研究的各个分支,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法(深度学习)的出现,人工智能开始大爆发。机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。深度学习本来并不是一种独立的学习方法,但由于近几年该领域发展迅猛,一些其特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。深度学习的各种算法已成为行为识别主要应用的技术,传感器采集的各类信号,通过卷积神经网络、循环神经网络等分类,识别出坐、走、跑、跳、上下楼等日常行为,也可以实现对被监护者摔倒等异常行为的检测。
山东大学 2021-05-11
一种便于信息采集的智能化翻耕机
成果描述:本实用新型公开了一种便于信息采集的智能化翻耕机,包括牵引悬挂装置(1)、安装在牵引悬挂装置(1)上的机架(2)、设置在机架(2)下端面上的铧(3),所述机架(2)上还设置有安装座(4),所述安装座(4)上安装有土地信息采集装置(5),所述土地信息采集装置(5)包括犁地深度传感器、土壤养分传感器、土壤墒情传感器、pH值传感器,并且均为具有WiFi或者ZigBee或者RJ45接口的传感器,在传感器本体外套接有圆钢保护管(6),其探头外套接有橡胶保护套(7)。采用上述结构,可从而减少了现有技术中土地信息采集的难度,并降低了信息采集的成本,同时也能加速农业信息化生产的发展进程,从源头上解决农业信息采集的发展瓶颈。市场前景分析:本实用新型公开了一种便于信息采集的智能化翻耕机,包括牵引悬挂装置(1)、安装在牵引悬挂装置(1)上的机架(2)、设置在机架(2)下端面上的铧(3),所述机架(2)上还设置有安装座(4),所述安装座(4)上安装有土地信息采集装置(5),所述土地信息采集装置(5)包括犁地深度传感器、土壤养分传感器、土壤墒情传感器、pH值传感器,并且均为具有WiFi或者ZigBee或者RJ45接口的传感器,在传感器本体外套接有圆钢保护管(6),其探头外套接有橡胶保护套(7)。采用上述结构,可从而减少了现有技术中土地信息采集的难度,并降低了信息采集的成本,同时也能加速农业信息化生产的发展进程,从源头上解决农业信息采集的发展瓶颈。与同类成果相比的优势分析:国内领先
成都大学 2021-04-10
1比特压缩感知的低功耗数据采集与重构方法
本发明基于压缩感知理论将将测量的信号通过1比特量化,去掉了之前被测信号能量为1的假设,通过循环迭代的公式最小化凸的替代函数,最终恢复出要测量的信号,相比于之前相关算法明显的提高的信号的恢复精度。
电子科技大学 2021-04-10
外设部件互连标准接口的多功能采集控制装置
本发明公开了一种外设部件互连标准接口的多功能采集控制装置。其第一外部接口和第二外部接口分别通过各自的PGA模块连到ADC模块的输入端,第三外部接口与ADC模块的第三输入端相连,FPGA模块通过DAC模块及差分模块分别与第三外部接口连接,第三外部接口通过光电耦合模块与FPGA模块连接,FPGA模块分别与第一、第二PGA模块、ADC模块及第三外部接口连接,FPGA模块通过PCI桥芯片最后连接到PCI总线上,电源模块给装置供电。本发明对三路模拟量输入,两路差分编码输入以及四路单端数字量输入传感器进行数据采集,而且提供两路模拟量输出,四对差分输出和两路数字输出接口来控制多种接口的外部设备。
浙江大学 2021-04-11
基于智能物联网/5G的信息采集与应用
项目成果/简介:数据采集技术可穿戴传感器是接触式传感器。加速度传感器测量运动加速度,心率、血压和血氧传感器检测心率、血压等生理数据。可将不同的传感器集成在智能手环、脚环、腰带等可穿戴设备中,以实现加速度、角速度和生理等数据的采集;物体和环境传感器是非接触式传感器,常见的物体传感器基于RFID技术,通常用于身份、物流等信息的识别。常见的环境传感器有声音传感器、磁力计、气压传感器、温湿度传感器和PM 2.5传感器等,实现各种环境信息的采集。多模态传输技术LPWAN (Low-Power Wide-Area Network,低功率广域网络)在LPWAN技术出现以前,通信技术已经有多种类别,短距离的有wifi、蓝牙、zigbee等,长距离的则有2G、3G、4G、5G等,但是如果把这些无线通信技术按照功耗与传输距离这两个维度划分的话可以发现在功耗低、距离远这个范围的技术还欠缺,而LPWAN技术的出现正好弥补了这个短板。       LPWAN可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱的基于蜂窝组网的通信技术,比如eMTC、LTE Cat-1、NB-IoT等。LPWAN 专为低带宽、低功耗、远距离、大量连接的物联网应用而设计。最具前景的LPWAN技术——NB-IoT和LoRa:物联网(IoT)应用需要考虑诸多因素,例如节点成本、网络成本、电池寿命、数据传输速率(吞吐率)、延迟、移动性、网络覆盖范围以及部署类型等,可以说没有一种技术可以满足IoT所有的需求。NB-IoT和LoRa两种技术具有不同的技术和商业特性,也是最有发展前景的两个低功耗广域网通信技术。这两种LPWAN技术都有覆盖广、连接多、速率低、成本低、功耗小等特点,都适合低功耗物联网应用。LoRa (Long Range):   一个LoRaWAN网络架构中包含了终端、基站、NS(网络服务器)、应用服务器这四个部分。基站和终端之间采用星型网络拓扑,由于LoRa的长距离特性,它们之间得以使用单跳传输,终端节点可以同时发送信息给多个基站。基站则对NS和终端之间的LoRaWAN协议数据做转发处理,将LoRaWAN数据分别承载在了LoRa射频传输和TCP/IP上。NB-IoT(Narrow Band Internet of Things)NB-IoT构建基于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络。NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。NB-IoT具备四大特点:一是广覆盖,将提供改进的室内覆盖,在同样的频段下,NB-IoT比现有的LTE网络增益提升20dB,覆盖面积扩大100倍;二是具备支撑海量连接的能力,NB-IoT一个扇区能够支持10万个连接,支持低延时敏感度、超低的设备成本、低设备功耗和优化的网络架构;三是更低功耗,NB-IoT终端模块的待机时间可长达10年;四是更低的模块成本,企业预期的单个接连模块不超过5美元。数据分析技术人工智能研究的各个分支,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法(深度学习)的出现,人工智能开始大爆发。机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。深度学习本来并不是一种独立的学习方法,但由于近几年该领域发展迅猛,一些其特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。深度学习的各种算法已成为行为识别主要应用的技术,传感器采集的各类信号,通过卷积神经网络、循环神经网络等分类,识别出坐、走、跑、跳、上下楼等日常行为,也可以实现对被监护者摔倒等异常行为的检测。应用范围:家居智慧控制,提高舒适度:家庭生活状态统计和日常需求预测与推荐;多模态行为分析和数据采集和传输系统;多模态行为数据采集和分析平台;基于LoRaWAN/5G的工厂环境、农业大棚等环境监测系统。技术成熟度:通过中试
山东大学 2021-04-10
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 547 548 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1