高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种高性能silicalite分子筛膜的制备方法
本发明公开了一种高性能silicalite分子筛膜的制备方法。该方法包含以下步骤:选取合适硅铝比的ZSM-5分子筛作为晶种;利用浸泡+擦涂的方法将适量晶种涂覆在载体上,干燥后形成晶种层;配制合成silicalite分子筛膜的合成液,室温搅拌陈化4小时;将带有晶种层的载体放入高压合成釜,并将陈化后的合成液逐滴加入后进行晶化;晶化完成后,用水洗涤、干燥,煅烧去除模板剂,得到silicalite分子筛膜。本发明首次使用ZSM-5分子筛制备晶种层,可以提高分子筛膜层与载体的结合力,减少膜层缺陷,显著提高分子筛膜的渗透汽化分离性能,具有良好的工业应用前景。
浙江大学 2021-04-13
一种交联改性聚酰胺复合膜及其制备方法
本发明公开了一种交联改性聚酰胺复合膜及其制备方法,其中制备方法包括:(1)将酸溶液与甲醛溶液混合均匀得到还原液,将还原液加热至预定温度并恒温;所述的酸为磷酸、乙酸、硼酸中的至少一种;(2)将表面含有氨基的聚酰胺复合膜浸入恒温的还原液中,搅拌反应后取出膜,洗涤去除还原液后得到N-羟基化修饰的聚酰胺复合膜;(3)将N-羟基化修饰的聚酰胺复合膜浸入交联剂溶液中,搅拌反应后取出膜,洗涤去除交联剂后得到交联改性聚酰胺复合膜;交联剂为戊二醛、己二醛、丁二醛中的至少一种。本发明的制备方法在不明显损失聚酰胺复合膜分离性能的同时增强了聚酰胺复合膜的耐氯性能。
浙江大学 2021-04-13
改善 PVB 汽车膜抗穿透性和抗低温冲击性
项目背景:1.夹层玻璃是由两片或多片玻璃,之间夹了一层 或多层有 PVB 膜,经过特殊的高温预压及高温高压工艺处理后, 使玻璃和中间膜永久粘合为一体的复合玻璃产品。2.夹胶玻璃因 其所具有的安全性、防盗性、隔音型、防紫外线、节能等性能广 泛应用于国内外汽车安全玻璃、建筑安全玻璃、太阳能光伏等领 域。 所需技术需求简要描述:1.PVB 膜片:①汽车前挡风玻璃用 夹层 PVB 膜的抗穿透性。试样规格 2mm 玻璃+0.76mm 胶片+2mm 玻 璃,300mm*300mm.用 2260 克的钢球在一定高度自由落体砸玻璃, 目前可以承受 3.5 米高度,目标需求胶片可以承受 4.2 米高度; ②汽车前挡风玻璃用夹层 PVB 膜的低温抗冲击性。试样规格 2mm 玻璃+0.76mm 胶片+2mm 玻璃,尺寸 300mm*300mm,在零下 20 摄 氏度条件下,用 227 克钢球在一定高度以自由落体方式砸玻璃, 目标需求可以承受 11 米高度。2.聚乙烯醇缩丁醛“PVB”:聚乙 烯醇缩丁醛的生产过程中第一步 PVA+丁醛的缩合反应,目前是 采用盐酸作为催化剂。寻找替代盐酸的催化剂或者无催化剂的方 法,要求替代材料低成本且无污染。  对技术提供方的要求:具有开展项目研发的能力及人员设备支持,以及验证和判断的科研能力,能够提供完整的解决方案。 
青岛昊成实业有限公司 2021-09-03
污水处理用聚四氟乙烯膜
本成果发明了推压-膨化-拉伸技术加工聚四氟乙烯中空纤维膜,自主研发了工业化可行的全套加工设备。打破了美国戈尔、日本住友等公司的垄断,填补了国内产品空白。该材料具有孔隙率发达、强度高、耐酸碱、耐腐蚀、耐温等特点,克服了传统膜材的性能缺陷。可采用膜蒸馏或过滤方式处理废水,用于酸性、碱性、腐蚀性强的废水处理领域。本技术已获发明专利 3 项。
浙江理工大学 2021-04-11
一种多元物质原子层沉积膜制备方法及装置
本发明公开了一种多元物质原子层沉积膜制备方法和装置,所 述方法,即使基片相对于原子层沉积反应腔直线运动,依次通过其内 用于完成不同原子层沉积的原子层沉积系统,基片通过每个原子层沉 积系统时:调整基片温度为相应原子层沉积反应最适温度。所述装置, 包括原子层沉积反应腔、基片承载台、运动平台和温度控制装置;原 子层沉积反应腔依次设置有多个原子层沉积系统;基片承载台,设置 在原子层沉积反应腔下方;运动平台,与基片承载台连接,带动基片 承载台运动;温度控制装置,设置在基片承载台下方。所述方法能高 效快速的制备多元物质原子层沉积膜,所述装置,能方便的通过现有 原子层沉积系统组装,兼容性强,功耗低,沉积效率高。 
华中科技大学 2021-04-11
一种基于高程等值线法量测树冠体积的方法
本发明公开了一种基于高程等值线法量测树冠体积的方法。该方法是在不用伐倒立木的情况下,通过免棱镜激光全站仪获取树冠三维空间坐标,以此绘制树冠的等高线,运用等高线建立树冠的数字高程模型计算出树冠的体积,这大大提高工作效率,降低劳动强度,尤其是避免了由于传统的树木体积过程中,需要砍伐大量的树木以获取区分断面直径,对森林造成损伤大的现象,具有广阔的市场前景。
北京林业大学 2021-02-01
一种基于高程等值线法量测树冠体积的方法
项目成果/简介:本发明公开了一种基于高程等值线法量测树冠体积的方法。该方法是在不用伐倒立木的情况下,通过免棱镜激光全站仪获取树冠三维空间坐标,以此绘制树冠的等高线,运用等高线建立树冠的数字高程模型计算出树冠的体积,这大大提高工作效率,降低劳动强度,尤其是避免了由于传统的树木体积过程中,需要砍伐大量的树木以获取区分断面直径,对森林造成损伤大的现象,具有广阔的市场前景。
北京林业大学 2021-04-11
钠法高纯氢氧化镁制备成套技术与装备
氢氧化镁用途广泛,是新型绿色环保型无机阻燃剂,是绿色无机阻燃剂、烟气除硫首选脱 硫剂,同时广泛用于含酸、含重金属废水处理剂等,市场前景广阔。此外,高纯氢氧化镁是制 造工业氧化镁、活性氧化镁、电熔凝氧化镁、电工级氧化镁、特种氧化镁等特种材料的优质、 价廉的原料。 华东理工大学开发的高纯氢氧化镁全套工业技术与装备,采用氢氧化钠和氯化镁为原料, 通过控制氢氧化镁结晶形貌,降低过滤粒度母液夹带,降低干燥氢氧化镁能耗,提高产品品 质,氢氧化镁平均粒度控制大于30µm,过滤性能良好,产品干燥能耗低,氢氧化镁纯度达到 99%以上,通过煅烧得到氧化镁纯度达99.5%以上。同时工艺副产的氯化钠溶液浓度高 (浓度大 于25%) ,杂质含量低,可以作为氯碱电解制备氢氧化钠的原料,实现全过程零排放。
华东理工大学 2021-04-11
水媒法提取植物油及副产物高效回收与利用
为克服压榨法提油率低、蛋白质变性严重及浸出法毛油精炼繁杂、油品安全质量低的问题,自上世纪50年代出现了以水为媒介提取植物油的研究,并发展出水代法和水酶法,但在大宗油料提油中始终难以工业化应用,其主要问题为水代法提油率低、水酶法用酶量大和缺乏油料亚细胞水平高效粉碎、多相体系大规模连续分离的技术与设备等。项目组自1988年开展以水为媒介的提油技术研究,在国家和省科技计划支持下,相关技术与装备研究取得突破,并实现产业化,其中2项鉴定成果达国际领先水平,获教育部技术发明奖二等奖 创新点: (1)革新水酶法提油工艺,大幅降低用酶量和生产成本。传统水酶法工艺会酶解油料中所有影响水酶法提油的组分,新工艺只酶解影响油脂释放和乳状液破除的组分。酶用量(对原料)由原来的1-2%降至0.15%,同时保护了花生等油料中大部分蛋白质的结构与功能性质。 (2)创新和拓展以水为媒介提油的研究思路,提出“水媒法提油技术”概念。在提取介质中加入部分食用乙醇,调节提取介质极性,减少乳状液形成和降低后续破乳与分离的难度,提高清油得率。项目组将此方法定义为乙醇水提法,在油茶籽油(山茶油)提取中实现产业化应用。2015年以来提出并完善水媒法提油技术概念,促进技术应用拓展。 (3)突破水媒法加工关键技术与装备,实现工业化油料高效干法粉碎及多相体系连续分离。研发了油料亚细胞水平高效干法粉碎设备,花生经此设备一次粉碎后,平均粒径接近亚细胞级(21.82 μm),满足水媒法加工要求。该设备在茶籽仁和核桃仁粉碎中有同样效果。提出了“沉降+两次两相离心”的组合,研制了高效智能化多相连续沉降分离器,实现产业化生产线上油、乳状液、水和渣四相连续分离。解决了长期限制水媒法产业化的技术和装备问题。 (4)集成水媒法技术与装备,实现水媒法提油及副产物高效回收利用产业化。建立了日处理花生50吨的水酶法提取花生油和蛋白(肽)、年加工2000吨油茶籽的乙醇水提法提取油茶籽油和茶皂素及年加工1800吨核桃水代法提取核桃油和蛋白的生产线。油和蛋白提取率均分别达到92%和85%以上。水媒法花生油和油茶籽油的3-氯丙醇酯、缩水甘油酯和反式脂肪酸含量远低于市售品牌油脂。
江南大学 2021-05-11
催化吹脱-吸附法处理高浓度酚氨废水的应用研究
"本项目主要是针对高浓度氨氮废水处理过程中存在氨氮处理效果差,处理效率低、氨氮吹脱过程中能耗较大、粗氨气吸附提纯过程中高温对于吸附材料的影响和水蒸气对于吸附过程的影响、回收产品(氨水或硫酸铵)纯度不高等技术问题。 本项目以高浓酚氨废水为处理对象,采用“催化吹脱-树脂吸附”技术,通过“高效催化”、“低温吹脱”、“强化吸附”等技术手段,同步实现氨氮高效吹脱、分离、提纯,从而实现酚氨废水的深度脱氨,实现氨氮的强化去除、高效回收和提纯精制,减少后续生化单元处理规模和运行成本,同时保障了回收产品的纯度,实现资源回用,具有很好的市场推广价值。"
南京大学 2021-04-10
首页 上一页 1 2
  • ...
  • 35 36 37
  • ...
  • 57 58 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1