高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高级吞咽机制模型
XM-TY高级吞咽机制模型   一、功能特点: ■ XM-TY高级吞咽机制模型为半侧成人头颈部,采用高分子材料制成,仿真度高。 ■ 演示吞咽机制原理。 ■ 演示误咽产生的原因。 ■ 颈部角度与误咽的相互关系。 ■ 误咽发生时的紧急救治处理方法。 ■ 正确进食姿势及其体位和病床角度的相互关系。 ■ 口腔护理时的吞咽练习。 ■ 观察鼻饲管在不同角度时的状态。 ■ 学习如何经鼻插胃管和间断性经胃管管饲。 ■ 学习口腔内部吸收原理。 ■ 配有可调节的模拟病床,病床以及头颈部均有角度指示针,可观察头颈角度的变化与病床的角度关系。   二、标准配置: ■ 吞咽与呼吸机制演示模型:1台 ■ 模拟病床:1张 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
高级女性导尿模型
XM-ZD2女性导尿模型   一、功能特点: ■ XM-ZD2高级女性导尿操作训练模型模拟一成年女性下半身,标准的导尿体位,仰卧双腿屈曲外展。 ■ 采用高分子材料制成,仿真度高,女生外阴部形象逼真、手感真实。 ■ 模型参照女性内外生殖器解剖结构设计,解剖结构包括膀胱、尿道、尿道括约肌等。 ■ 分开小阴唇可显露尿道口、阴道口和阴蒂,尿道粗、短、直,约3-5cm。 ■ 可进行导尿、留置尿管和膀胱冲洗操作训练。 ■ 润滑过的导尿管可以通过尿道口插入尿道,进入膀胱,具有三个生理狭窄、两个弯曲。 ■ 当导尿管插入尿道,通过尿道括约肌进入膀胱时,具有真实的阻力与压力。 ■ 当导尿管通过尿道进入膀胱时,会有模拟尿液流出。 ■ 可使用临床标准双腔或三腔导尿管。 ■ 可进行造瘘引流术训练。 ■ 可进行灌肠术训练。 ■ 可进行臀部肌肉注射训练。 ■ 可进行股外侧肌肉注射训练。 ■ 可反复进行练习。   二、标准配置: ■ 女性导尿操作训练模型:1台 ■ 导尿管:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
高级男性导尿模型
XM-ZD1男性导尿模型   一、功能特点: ■ XM-ZD1高级男性导尿操作训练模型模拟一成年男性下半身,标准的导尿体位,仰卧双腿屈曲外展。 ■ 采用高分子材料制成,仿真度高,男性阴茎形象逼真、手感真实。 ■ 模型参照男性内外生殖器解剖结构设计,解剖结构包括尿道、外生殖器等。 ■ 可进行导尿、留置尿管和膀胱冲洗操作训练。 ■ 润滑过的导尿管可以通过尿道口插入尿道,进入膀胱,具有三个生理狭窄、两个弯曲。 ■ 尿道全长约18-22cm,抬起阴茎与腹壁可成60°角,使导尿管顺利插入,当导尿管通过尿道进入膀胱时会有模拟尿液流出。 ■ 导管通过粘膜皱壁、尿道球部及尿道内括约肌时,学生将会体验到如同真人般的狭窄感,可以通过改变体位和阴茎的位置,使导管顺利插入。 ■ 可使用临床标准双腔或三腔导尿管。 ■ 可进行造瘘引流术训练。 ■ 可进行灌肠术训练。 ■ 可进行臀部肌肉注射训练。 ■ 可进行股外侧肌肉注射训练。 ■ 可反复进行练习。   二、标准配置: ■ 男性导尿操作训练模型:1台 ■ 导尿管:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
氧化铁黑
氧化铁黑是一种带有磁性的黑色颜料,由于性能优异,应用广泛,且深受商家的重视。在我国,此种产品研究和生产使用的历史较短,随着现代化科学技术的发展,现代化办公用品的不断更新,使带磁性的黑色印刷,复印材料的迫切需要,使氧化铁黑等黑色磁性颜料的开发研究及应用备受重视,研究和生产的商家看到这一不可多得的商机,纷纷上马。由于新产品的技术含量较高,致使较多的生产厂家质量或生产成本存在一定的缺陷,以致该产品上不去,产品市场供应较紧缺。 氧化铁黑产品是黑色或黑红色粉末,具有磁性,相对密度为5.18,熔点为1594℃。不溶于水及醇,但溶于浓盐酸,耐光,耐候性良好,着色力和遮盖力都很高,在有机溶剂中十分稳定,耐碱性良好,但颗粒易被氧化变成红色的氧化铁,在200-300℃时灼烧则易形成γ-Fe2O3。
武汉工程大学 2021-04-11
仿生催化氧化技术
以酶类结构的金属卟啉为催化剂,模仿生物氧化历程,突破温和条件下高效、专一活化氧气的技术难 题,实现高附加值含氧有机化物的合成,并致力于实现该技术的工业应用,填补国内外技术空白,从本质 上解决化工领域氧化过程的安全隐患。
中山大学 2021-04-10
微弧氧化技术
微弧氧化(Micro-arc oxidation,MAO)技术是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,原位生长出以基体金属氧化物为主的陶瓷膜层。 微弧氧化工艺克服了硬质阳极氧化的缺陷,极大地提高了膜层的综合性能。微弧氧化膜层与基体结合牢固,结构致密,韧性高,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性。该技术具有操作简单和易于实现膜层功能调节的特点,而且工艺不复杂,无废水废气排放,不造成环境污染,是一项全新的绿色环保型材料表面处
常州大学 2021-04-14
甲酸电氧化技术
近日,清华大学化学系王定胜教授、李亚栋院士领导的课题组在甲酸电氧化领域取得突破,相关工作以“负载在氮掺杂碳上的单原子Rh:一种甲酸氧化的电催化剂”(Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation)为题在《自然·纳米技术》(Nature Nanotechnology)发表。 燃料电池是一种理想的能量来源,它可以以环境友好的方式将化学能转换为电能。氢氧燃料电池作为航空飞船的主要燃料,在上世纪80年代就已经得到了发展,近年来氢氧燃料电池在汽车上的应用也有了突飞猛进的提高。然而氢氧燃料电池需要用体积大且危险的高压氢气作为其燃料,这限制了氢氧燃料电池的发展。而直接甲酸燃料电池(DFAFCs)由于其体积小,毒性小,nafion@膜的穿透率低等优点,被认为是未来便携式电子设备最有前途的电源之一。在之前的研究中,负载型纳米级钯和铂通常被认为是DFAFCs的阳极反应甲酸电氧化(FOR)中最有效的催化剂,并得到了深入的研究。然而,由于FOR催化剂质量活性较低和一氧化碳抗毒性较差, DFAFCs阳极材料的发展达到了一个瓶颈,极大地阻碍了其应用。 SA-Rh/CN的合成路径示意图及其表征 在本工作中,研究人员使用主-客体合成策略成功地合成负载原子分散Rh的氮掺杂碳催化剂(SA-Rh/CN),发现尽管Rh纳米颗粒对甲酸氧化活性很低,但是SA-Rh/CN却具有极好的电催化性能。与最先进的催化剂Pd/C和Pt/C相比,SA-Rh/CN的质量活性分别提高了28倍和67倍。有趣的是,在CO剥离实验中,我们发现虽然纳米级Rh催化剂对CO毒性十分敏感,但是SA-Rh/CN很难吸附CO并且可以在很低的电压下氧化CO,这说明SA-Rh/CN对CO毒化几乎免疫。经过长期反应的测试后,SA-Rh/CN中的Rh原子具有抗烧结的能力,并因此在30000s的CA测试或者20000圈ADT测试后活性几乎没有改变。在组装电池的实验中,SA-Rh/CN的质量比能量密度在不同温度下分别是商业钯碳催化剂的8.8倍(30oC),14.8倍(60oC)和14.1倍(80oC),这也说明了SA-Rh/CN在DFAFCs的应用中具有很高的潜力。最后,研究者用密度泛函理论(DFT)计算了Rh单原子甲酸氧化的机理。研究者发现在SA-Rh/CN上,甲酸根路线更为有利。和Rh纳米颗粒具有较低的CO吸附能垒不一样,SA-Rh/CN上的Rh单原子吸附CO能垒较高,以及与CO的相对不利的结合,使SA-Rh/CN具有极高的CO抗毒性。 这一发现将传统的甲酸电氧化催化剂的质量比活性提高了一个数量级,并且很好地解决了传统纳米催化剂的CO毒化问题。该发现有助于在燃料电池领域取得突破,并有望应用于便携式电子设备上。 本论文的通讯作者是王定胜教授、李亚栋院士,清华大学博士后熊禹是本文的第一作者。本研究受到国家自然科学基金委和科技部的经费资助。 论文链接: https://www.nature.com/articles/s41565-020-0665-x
清华大学 2021-04-11
氧化镓衬底晶片
氧化镓衬底晶片● 大功率高能半导体器件:电磁轨道炮、舰载电磁弹射系统等● 日盲探测类:大火监测、雷达预警、近地空间通讯器件等● 高功率LED器件:高亮度、超大功率、科研考察探测设备等● 特高压输电、城市轨道及交通功率器件
青岛嘉星晶电科技有限公司 2021-08-30
厌氧氨氧化
青岛思普润水处理股份有限公司 2021-09-02
XM-ECX高级耳冲洗训练模型高级耳冲洗模型
XM-ECX高级耳冲洗操作训练模型   一、功能特点: ■ XM-ECX高级耳冲洗操作训练模型采用高分子材料制成,仿真度高。 ■ 模型呈耳冲洗的标准体位。 ■ 解剖结构精确,可通过耳镜观察内部详细的解剖结构,如耳道、鼓膜等。 ■ 利用该模型练习为患者冲洗耳道,避免直接为患者冲洗的危险。 ■ 可反复进行练习   二、标准配置: ■ 高级耳冲洗训练模型:1台 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 113 114 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1