高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
天津电视台《都市报道60分》物联网遇上菜篮子 解锁开心农场
我校协同育人企业天津腾领电子科技有限公司基于自研国产化工业控制系统开发了设施农业管控系统,利用边云协同控制架构,集成以大模型驱动的作物生长监测、环境精准调控、水肥综合管理等技术装备。项目已在多地开展应用,开发了“认领一块地”等商业模式。2025年4月7日,天津电视台新闻频道《都市报道60分》以《物联网遇上菜篮子 解锁开心农场》为题进行了报道。
天津市大学软件学院 2025-05-21
金属卟啉仿生催化氧化合成含氧有机化学品
含氧有机产品如己内酯、环氧环己烷均是重要的有机合成中间体。己内酯主要用于合成聚己内酯和与 其它酯类共聚或共混改性,其中聚己内酯具有独特的生物相容性、降解性以及良好的渗透性,在环保和医 用材料方面具有广泛的应用。环氧环己烷开环反应可制备大量中间体,是合成盐酸苯海索、农药三环锡、 克螨特、1,2-环己二醇、聚碳酸酯等的重要原料,广泛应用于医药、农药、固化剂、增塑剂等领域。由于 己内酯和环氧环己烷的合成存在生产的安全性和产品的稳定性等方面的难题,因此其合成技术难度大,目 前只有美、英、日等国的很少几家公司在生产,而我国主要依靠进口。 仿生催化氧化技术就是模拟血红素的活性中心结构,通过设计合成与酶结构相似的化合物,模拟与酶 催化反应相似的反应历程,实现温和条件下的催化氧化过程。本技术以氧气为氧化剂,以类酶结构的化合 物为催化剂,实现在温和条件下环己酮、环己烯高选择性氧化制得己内酯和环氧环己烷的仿生催化工艺。 本技术成果已申请国家发明专利,是我国拥有自主知识产权的制备己内酯和环氧环己烷新工艺,目前正处 在中试阶段。本技术成果填补了目前氧气氧化环己酮、环己烯制备己内酯和环氧环己烷的国内外技术空白。
中山大学 2021-04-10
一种基于感兴趣目标增强的极化合成方法
本发明公开了一种基于感兴趣目标增强的极化合成方法,本发明利用各种有效的像素极化目标分解 算法获取极化分量,同时考虑各个极化分量的空间信息,构造局部区域的极化特征图像集;在图像集中, 以可视化为目的,通过聚类得到三个内容准互补的图像子集;利用图像子集的稀疏表示,选取最具代表 性的极化特征作为极化合成分量;由极化合成分量构造合成图像。获得的极化合成图像充分展示了感兴 趣目标的极化信息。本发明可有效提高感兴趣目标的可视性和可读性。 
武汉大学 2021-04-14
一种绿色催化合成螺羟吲哚衍生物的方法
(专利号:ZL 201410114721.5) 简介:本发明提供一种绿色催化合成螺羟吲哚衍生物的方法,属于有机合成技术领域。该合成反应中靛红、丙二腈和β-二酮的摩尔比为1:1:1,碱性离子液体催化剂的摩尔量是所用靛红的2~5%,反应溶剂水的用量(ml)是靛红摩尔量(mmol)的2~5倍,反应温度为80~100℃,反应时间为8~35min。反应结束后冷却至室温,抽滤,所得滤渣用90%乙醇水溶液(质量比)进行重结晶、干燥后得到纯螺羟吲哚衍生物
安徽工业大学 2021-01-12
由聚合物纳米中空胶囊制备绝热聚合物材料的方法
本发明公开了一种由聚合物纳米中空胶囊制备超级绝热聚合物材料的方法,该方法首先利用双亲性大分子可逆加成断裂链转移试剂制备聚合物纳米胶囊,然后制备胶囊间交联剂,最后按胶囊与胶囊间交联剂质量比2.5:1至0.8:1的比例,将胶囊间交联剂与聚合物纳米胶囊乳液混合,调节pH至3.0~6.8,于60~90oC温度下反应30min至24h,使乳液凝胶化,再通过四氢呋喃置换出纳米胶囊中的核芯石蜡,真空干燥得到聚合物纳米多孔材料;本发明制备工艺简单,孔隙率和孔径大小可以通过改变纳米胶囊乳液的固含量、醚化三聚氰胺甲醛树脂的用量以及纳米中空胶囊自身空隙率调节,并且该多孔材料相对于传统的绝热材料具有很高的力学强度。
浙江大学 2021-04-13
药用植物大戟3-羟基-3-甲基戊二酰辅酶A的还原酶蛋白编码序列
一种药用植物大戟Ep-Hmgr蛋白编码序列,属于基因工程领域。所分离出的DNA 分子包括:编码具有药用植物大戟Ep-Hmgr蛋白活性的多肽的核苷酸序列,所述的核苷酸序列与SEQ ID NO.3中从核苷酸第81-1832位的核苷酸序列有至少70%的同源性;或者所述的核苷酸序列能在40-55℃条件下与SEQ ID NO.3中从核苷酸第81-1832 位的核苷酸序列杂交。本发明是一种3-羟基-3-甲基戊二酰辅酶A的还原酶,有助于提高药用植物大戟中次生代谢产物或其前体的含量,对于保护人民的健康生长有所帮助
江苏师范大学 2021-04-11
亚油酰乙醇胺在提高植物灰霉病和细菌性叶斑病抗性中的应用
本发明公开了亚油酰乙醇胺在提高植物灰霉病和细菌性叶斑病抗性中的应用以及在制备提高植物灰霉病和/或细菌性叶斑病抗性的制剂中的应用。本发明以亚油酰乙醇胺为主要有效成分制备的制剂,通过诱导植物体内的茉莉酸、水杨酸以及乙烯的信号路径,可显著增强植物对灰霉病和细菌性叶斑病的抗性,减少因灰霉病和细菌性病害给植株带来的经济损失。采用本发明制剂防治植物灰霉病和细菌性叶斑病简单易行,成本较低,可显著延迟和抑制灰葡萄孢、丁香假单胞菌单一或复合病原菌在叶片上的生长及病害的扩散,大大提高了植株对灰霉病和细菌性叶斑病的抗性。
浙江大学 2021-04-13
降解对比抑制:开发靶向3-羟基-3-甲基-戊二酰辅酶A还原酶的降解小分子
4月22日,饶燏课题组与武汉大学宋保亮课题组合作在《药物化学杂志》(Journal of Medicinal Chemistry)发表题为“降解对比抑制:开发靶向3-羟基-3-甲基-戊二酰辅酶A还原酶的降解小分子”(Degradation Versus Inhibition: Development of Proteolysis-Targeting Chimeras for Overcoming Statin-Induced Compensatory Upregulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase)的研究论文。HMGCR(3-Hydroxy-3-methylglutaryl Coenzyme A Reductase)是胆固醇( cholesterol)合成途径中的限速酶,并且是经典的治疗血脂异常的药物靶点。它的抑制剂( statin,他汀类化合物)如阿伐他汀(atorvastatin,立普妥®,辉瑞)在临床被用于预防和治疗心血管疾病,并取得了极大的成功。但是有相当一部分人对他汀类药物不耐受,比如会发生骨骼肌损伤等较为严重的副作用,这有可能与服用他汀类药物后体内通过负反馈调节导致HMGCR补偿性表达升高有关。因而在该工作中,研究人员利用蛋白靶向降解嵌合体(Proteolysis-Targeting Chimera, PROTAC)的技术,对HMGCR在进行降解而起到抑制胆固醇合成作用的同时可以避免HMGCR的高表达,从而有望降低副作用。 图1.抑制剂与PROTAC对HMGCR的影响 在该工作中,研究人员首先筛选出SRD15细胞系作为细胞测试的基础,然后基于HMGCR的配体阿伐他汀和E3链接酶CRBN的配体泊马渡胺进行了一系列的构效关系研究,发现化合物P22A作为PROTAC具有较好地降解活性(DC50~100 nM)。相比之下,抑制剂阿伐他汀对HMGCR引起了明显的上调作用(图1)。 图2.抑制剂和PROTAC对LDLR和胆固醇的影响 接下来,研究人员通过一系列的生化和细胞生物学实验证实了PROTAC通过泛素-蛋白酶体系统发挥作用的机制;通过蛋白组学的研究发现抑制剂和PROTAC引起的组学应答也有很大不同。抑制剂和PROTAC对胆固醇合成抑制和通过SREBP通路引起的低密度脂蛋白受体(LDLR)表达水平上调的能力相当(图2)。 HMGCR是位于内质网上的八次跨膜蛋白, PROTAC对此类蛋白的降解能力往往有限,该工作首次证明利用PROTAC技术对内质网蛋白进行降解的可行性。另外,靶蛋白上调的现象还出现在很多其它的抑制剂中,该工作展示了面对此种情况时是PROTAC一个很好的应用场景。 宋保亮课题组博士生李美欣和饶燏组博士后杨毅庆为本工作共同第一作者,饶燏和宋保亮课题组罗婕为共同通讯作者。本研究得到了国家自然科学基金、清华-北大生命联合中心以及中国博士后基金的大力支持。 原文链接: https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00339
清华大学 2021-04-11
一种β,β-二芳基烯的合成方法
本发明公开了一种β,β-二芳基烯的合成方法,在有机酸溶剂中,在钯催化剂和银盐的存在下,卤代芳烃与末端烯基化合物经偶联反应得到β,β-二芳基烯;其中,有机酸溶剂为醋酸,钯催化剂为醋酸钯,银盐为醋酸银、碳酸银或氧化银,卤代芳烃为碘代芳烃,偶联反应的反应温度为80~130℃,反应时间为0.25~24小时。采用本方法,以对环境友好的有机酸作为溶剂,并以银盐为添加剂,具有催化剂用量少,无需添加其他配体,反应条件简单温和,后处理简单,产物收率高等优点。
浙江大学 2021-04-11
乙炔氢氯化制氯乙烯Au基催化剂
"氯乙烯(VCM)主要用于合成聚氯乙烯树脂(PVC)。目前我国氯乙烯生产主要通过乙炔法生产。然而,乙炔法一直采用剧毒的氯化汞催化剂,严重制约着乙炔法的可持续发展。Au催化剂被众多研究者认为是最有可能工业化的非汞催化剂。本研究制备了一种促进型Au基催化剂,结果表明该催化剂对Au活性物种的失活、催化剂载体表面的积碳消除作用有明显的促进效应。稳定性考评结果显示,在工业条件下,氯乙烯选择性为100%,预估寿命超过3000 h。相关研究结果已申请多项中国专利。 项目已完成实验室小试和催化剂组成,载体等参数的优化和催化剂放大制备。拟应用于全国层面的氯碱行业替代剧毒氯化汞催化剂,即煤基乙炔氢氯化合成氯乙烯单体过程中的关键催化剂,在不改变原有乙炔氢氯化工业反应条件前体下仅替换现有氯化汞催化剂即可,具有较好的社会效益。"
厦门大学 2021-04-10
首页 上一页 1 2
  • ...
  • 54 55 56
  • ...
  • 173 174 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1