高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
先进金属材料及其高端制备技术
 1. 高质量钛合金材料及精密加工制品:研发、生产和销售高质量钛合金锭坯、相关石油煤炭等能源开采用钛合金部件及板换用高均匀性坯料,用于高质量钛合金粉末的生产和高质量钛合金精密铸造用原料,期望稳定生产后在该产品方向上形成5000-6000万元的销售规模,利润约500万元左右。   2. 高质量航空航天复杂零部件及医疗植入体:研发、生产和销售高质量电子束3D柔性快速打印技术生产的复杂航空航天零部件及生物工程用植入体以及粉末冶金近净成型制品。由于电子束3D柔性快速打印技术是一种航空航天零部件制造领域革命性新技术,具有十分广阔的市场前景;生物植入体的市场前景在未来10-20年具有非常大的增长空间,市场规模约为100亿以上。期望在5年,电子束3D打印金属复杂零部件产品可形成年销售收入约2亿元左右,利润3000-4000万元左右。   3. 低成本高洁净钛合金粉末及其制品:研发、生产和销售低成本高质量钛合金粉末及其制品。主要客户为国内外钛合金粉末冶金制品公司、激光快速成型制品公司、水汽油过滤器件和装备生产公司、航空航天及兵器工业用过滤吸附零部件和系统生产公司等。该市场前景十分看好,估计未来10年将会有较为迅猛的增长,市场规模约为30~50亿元。期望该产品方向上,在5年左右形成销售收入5000-6000万元,利润600万元。 
南京工业大学 2021-04-13
先进粉末高温合金的研制及制备技术
采用注射成形工艺实现复杂形状增压涡轮的近终成形,并满足高性能和低成本的要求。根据注射成形涡轮对零件壁厚的要求,选择 ø52mm 涡轮作为研制对象,并完成了中空蜗轮的结构设计及可靠性校验,中空孔径确定为 ø5mm,孔深 25mm,如图 1 所示。对比分析实芯涡轮和中空涡轮的离心应力分布可知,采用中空结构的涡轮,其应力分布较原始涡轮应力分布一致,但涡轮离心应力有所增大,中空结构涡轮的最大离心应力为 626MPa,较原始涡轮增加了 20.4%。涡轮采用中空设计后,自振频率变化很小,频率平均变小 0.167%,可近似认为没有变化。中空结构增压涡轮不仅达到了减轻重量的目的,而且大幅度减小了烧结变形。设计了侧向抽芯模具结构(如图 2 所示),实现了复杂形状增压涡轮的近终成形。采用数值模拟方法对注射成形充模过程进行了模拟,得出了喂料的充模过程(如图 3 所示),并阐明了涡轮在注射成形过程中产生的缺陷与机理。优化了注射成形工艺参数,得出最佳的注射成形工艺参数为:注射温度为 160℃,注射压力为 60MPa,模温为 80℃,最终制备出了无缺陷的注射成形坯。以平均粒度 15μm 的惰性气体雾化的 K418 镍基高温合金为原料,选用 67%装载量,将粉末与粘结剂(60%石蜡+15%高密度聚乙烯+15%聚丙烯+10%硬脂酸)于 140℃在开放式混炼机中混炼 30min,制备出适合镍基高温合金粉末注射成形的高效粘结剂,制备出了流变性能良好的注射喂料。分析了脱脂方法、脱脂制度和脱脂温度对致密度和最终高温合金性能的影响,掌握了碳、氧含量的精确控制技术。通过烧结+热等静压工艺获得高致密度的粉末高温合金,具有晶粒细小、显微组织均匀、综合力学性能优异等优点。MIM418 合金 1230℃真空烧结相对密度为 97%,热等静压后的样品接近全致密。图 1 实芯涡轮和中空结构涡轮图 2 侧向抽芯模具结构图 3 涡轮注射填充过程模拟经过 1200℃固溶/空冷、750℃时效,MIM418 抗拉强度达到 1425MPa,屈服强度为1004MPa,延伸率达到19.4%,与铸造合金性能相比分别提高了70%,30%,120%。图 4 为烧结态的注射成形涡轮。涡轮表面光洁,尺寸精度高,如图 4 所示。图 4 注射成形涡轮制备出满足涡轮使用性能测试要求的涡轮,涡轮尺寸与内部质量良好,达到装机测试要求。涡轮样品在无锡威孚英特迈涡轮增压器公司进行了台架实验,图5 所示为涡轮样品焊接及部分工装的照片。钢轴焊接后接头抗拉破断力达到 18吨,远高于铸造涡轮与钢轴的焊接强度。转速相同时,粉末注射成形涡轮部件测频一致性和气动性能涡端一致性均优于铸造性能,超速飞裂试验停止在 225000转/分与 225000 转/分,增压器拆检的结果可知,超速飞裂试验涡轮表现良好,两套增压器的失效皆由涡轮轴断裂造成。粉末注射成形涡轮样件测频一致性优于铸造涡轮,粉末注射成形涡轮与钢轴联结强度也明显高于铸造涡轮。粉末注射成形MIM418 涡轮在超速飞裂试验中表现不俗,在钢轴断裂 21.5/22.5 万转的状态下,涡轮仍保持完好。粉末注射成形涡轮的涡端试验表明,涡轮部件涡端性能一致性较好,3 组样品涡端的效率曲线基本重合,均在±0.5%的偏差内。
北京科技大学 2021-04-13
氮化硅超细粉流态化制备技术
氮化硅陶瓷是一种耐高温耐磨材料,广泛用于冶金、化工、能源等领域,氮化硅粉是制备氮化硅的原材料。实验室提出了一种流态化直接氮化制备超细粉方法,可低成本生产晶相和非晶相氮化硅粉。
北京科技大学 2021-04-13
新型蛋白酶酶法制备明胶技术
已有样品/n本项目筛选获得了一个蛋白酶,并利用该酶建立了制备明胶的新工艺。与传统酸碱法相比,该工艺能够节约淡水50%以上,生产周期从60-100天缩短为5-10天,同时大幅降低酸碱试剂的消耗量,与普通酶法相比,成本降低,产品质量和得率将大幅提高。本技术适用于现有明胶厂的工艺升级替代。总投资额600-1000万元,综合成本降低20%,三废排放降低30%。
中国科学院大学 2021-01-12
辐射技术制备水处理用氟吸附树脂
已有样品/n该项目采用电子束辐射技术研发高性能水处理吸附水中氟离子的树脂材料。利用电子加速器产生的电子束辐射高分子基材产生活性点诱发化学反应,在粉体微球表面导入有吸附分离功能的官能团。本项目开发一种基于纤维素基材的高效除氟吸附树脂。利用电子加速器辐射接枝技术结合化学修饰在微晶纤维素基材表面上导入对氟有选择性吸附能力的功能单体。通过对辐射接枝条件的控制和单体种类的筛选,实现具有高效除氟特性的吸附树脂的合成。在此基础上,
华中科技大学 2021-01-12
车用燃料电池膜电极制备技术
01. 成果简介 近年来,随着氢能利用技术发展逐渐成熟,应对气候变化压力持续增大,以及氢能市场前景巨大,氢能在世界范围内备受关注,世界发达国家均将氢能及综合应用作为未来能源发展的重点方向之一。燃料电池汽车融合了内燃机汽车和纯电动汽车的优点,不仅具有零排放、高效与高功率密度的优势,而且续驶里程足够长,被业界公认为是新能源汽车的发展趋势。经过北京奥运会23辆、上海世博会的196辆燃料电池汽车的批量示范验证和多轮技术迭代优化,燃料电池汽车开始进入交通运输领域的主战场,从2013年开始,欧、美、日、韩的燃料电池汽车相继上市销售。与国外发展路径不同,我国从燃料电池商用车切入推进氢能在交通领域的应用,氢燃料电池商用车已实现小批量生产并在上海、北京、河北、广东等地示范运营。氢能行业迎来了产品孕育的发展机遇。 膜电极作为燃料电池发动机的核心部件,代表企业如美国GORE公司、英国Johnson Matthey公司。本项成果提供了一种制备膜电极的技术,创新点为:1)采用“热定型法”工艺制备催化层,优化电化学三相界面和促进多相传质,解决了传统膜电极性能低、寿命短瓶颈问题;2)发明了将质子交换膜和催化层封装在气体扩散层内的一体化膜电极产品,提升了燃料电池的一致性和可靠性,并提高了电堆生产效率。该项成果已应用于示范项目,应用情况良好。性能指标:1)面电导: >40S/cm22)拉伸强度: >35MPa3)H2渗透率:<2mA/cm24)0.6V@2.5A/cm2 (测试条件:1.5atm,70℃,空气计量数2.3,湿度80%)5)寿命:20000小时(加速老化法,10%性能衰减)02. 应用前景 燃料电池03. 知识产权 本项成果已申请专利22项。04. 团队介绍 团队在燃料电池应用研究方面已有超过20年的技术积累,在技术开发和成果转化过程中,先后获得“第十九届全国发明展览会发明奖”金奖、北京市第三届发明专利奖一等奖、“清华大学科研成果推广应用效益奖”二等奖、“第十届国际发明展览会发明奖”金奖、湖北省技术发明奖等多项奖励。负责人为副教授、博士生导师,累计在多个国际权威期刊上发表SCI论文96多篇,申请发明专利60余项。05. 合作方式 技术许可。06.联系方式 lijiaoli2016@tsinghua.edu.cn wangcheng@tsinghua.edu.cn
清华大学 2021-04-13
新抗艾滋病因子CGF制备技术
CGF是从植物提取的单一成分,经医学科学院动物研究所“药物细胞内抗艾滋病毒药效实验”证明在安全药物浓度62.5ug/ml—0.5mg/ml时对艾滋病病毒的抑制率为77%—97.6%,现在可以作为体外消毒药应用,也可进一步通过体内实验开发成体内注射用药。 对艾滋病病毒的抑制率为77%—97.6%。
北京航空航天大学 2021-04-13
高性能铝合金与先进制备技术
开发的新型快速时效响应型 Al-Mg-Si-Cu-Zn 系合金兼具优异冲压成形性能(r>0.6,Δr<0.1)和弯边性能(rmin/t≤0.6)以及高烤漆硬化增量,其模拟烤漆硬化增量达到 130-160MPa,室温放置 45 天后的烤漆硬化增量仍可达 140MPa 以上,远高于目前国内外所报道 Al-Mg-Si 系合金(包括商用 AA6016 和 AA6111合金)80-120MPa 的烤漆硬化增量。成功实现工业大铸锭及 2m 以上宽幅薄板的制造,所获薄板的成形性能、烤漆硬化性能均表现优异,成功冲制出典型汽车部件。成功开发出可热处理强化的 Al-Mg-Zn 系合金及配套双级时效/预时效-烤漆硬化处理工艺,使新型合金 H131 和 H321 态的强塑性高于 ASTM B928 对船用合金的要求,且综合性能全面优于国外最先进的 AA5059 铝合金,填补了我国高性能船用铝板的技术空白。研发的系列 Al-Zn-Mg-Cu 合金具有与 AA7449、AA7085 和 AA7081 商用合金相当的强度和更高的断裂韧性,部分性能优于美铝开发的 AA7055 高强铝合金;掌握中厚铝板多道次、无翘曲连续异步轧制技术,显著改善厚向组织性能均匀性,是解决中厚板心部难变形问题的关键技术;开发出适用于高强 7000 系铝合金的高效短流程中间/最终形变热处理加工工艺,明显提升高强铝合金薄板室温拉伸塑性,其综合性能比肩 HSLA、DP 及 TR 等汽车用钢;开发的超低温变形加工技术可将现有商用铝合金及不锈钢板带的屈服强度提高 20-30%以上,综合性能优于如 AK Steel/Outokumpu/太钢等生产的薄板产品。
北京科技大学 2021-04-13
高温过滤用多孔材料及制备技术果
高温 TiAl 金属间化合物多孔材料,解决了普通金属多孔材料高温抗氧化、抗酸碱腐蚀性能差,陶瓷多孔材料难以焊接组件化和强度较差等难点,提高了多孔材料的使用性能、扩展了服役环境。本成果涉及反应烧结法制备高性能高温TiAl 合金多孔材料的新技术和多孔材料孔隙形成机理。制备的 TiAl 多孔材料可应用于环保、化工、石油、冶金、矿山、食品、医药及生物等领域作为过滤、分离、隔热、生物骨架及催化剂载体等,对于废气废液净化回收、节能环保等具有重大意义。
北京科技大学 2021-04-13
新型高强高韧铸造铝合金制备技术
该合金是在ZL205A合金成分基础上,通过微合金化与变质处理后获得, 制备方法简便,工艺简单,便于操作。该合金具有密度小、比强度高等特点,延伸率比未变质合金分别提高11%和70%,而屈服强度基本没有变化,同时具有更高的室温塑性,可广泛应用于航空、航天、汽车、机械等行业。随着现代工业及铸造新技术的发展 ,对铸造铝合金 ,尤其是具有特殊性能 ,如具有高强度、优良的耐磨性和耐腐蚀性的铸造铝合金 ,需求量越来越大。 主要性能指标:1. 抗拉强度为:450~480MPa;2. 延伸率为7~11 %;3. 屈服强度=330~350 MPa;室温塑性:变形200%完好无损,变形300%时出现开裂。
北京航空航天大学 2021-04-13
首页 上一页 1 2
  • ...
  • 33 34 35
  • ...
  • 938 939 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1