高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
科学技术普及法22年来首次修订!筑牢大国科普基石
11月4日,科学技术普及法修订草案首次提请全国人大常委会会议审议,这是科学技术普及法自2002年公布施行以来的首次修订。
新华社 2024-11-04
服务三农的安全可靠电子交易关键技术研究和应用
本成果针对我国农村幅员广大、信息基础设施建设薄弱、难以推广电子交易的现状,积极响应国家“三农”战略,研制适合农村应用环境的电子交易平台、交易终端和专用芯片,形成了服务三农的整套电子交易解决方案,为农村金融业务提供了创新电子交易产品,成为中国农业银行等金融机构服务“三农”的新型支付渠道。 成果基于多学科交叉和创新集成的技术路线,首创了基于瘦客户端型B-C/S架构的低成本、易维护金融交易平台和交易终端;通过专用芯片降低了终端成本,提高了终端可靠性。项目申请发明专利6项,已授权16项,其创新点解决了电子交易终端应用于我国农村复杂环境下的成本、维护、安全、可靠性等诸多关键技术问题,技术水平达到国际先进,国内领先。该成果荣获2011年江苏省科技进步一等奖。
东南大学 2025-02-06
新型的碳海绵的制备
近年来,随着微型化、便携式电子产品的迅猛发展,基于超级电容器和电池的超薄、柔性储能器件受到越来越广泛的关注。组装该类高性能的柔性储能器件需要三维柔性电极材料。三维柔性碳电极是最佳的选择,主要因为其惰性的化学特征,而且可以用于几乎所有的电解质体系。目前文献报道的三维柔性碳电极主要是基于碳纳米材料,如碳纳米管和石墨烯等,然而这类柔性电极制备比较复杂,成本较高,难以实现大规模化生产。 我们创新性地采用直接高温碳化聚合物泡沫的方法成果制备了碳海绵。该方法简单,且易于大规模化生产。所制备的碳海绵具有以下特征: 稳定的三维多孔网络结构; 良好的弹性; 可控的孔隙度,孔隙度范围:95-99.9%; 可控的密度,密度范围:3-100 mg/cm3; 可控的导电性,导电率范围:1-30 s/cm; 超疏水和超亲油性。
江西师范大学 2021-05-05
乳液法制备减反膜
大面积多功能高效减反射膜技术近年来受到广泛关注。针对目前采用溶胶-凝胶法、层层自组装法、化学蒸镀法等方法存在制备过程繁琐、生产效率低、所得减反膜呈开孔结构、存在环境稳定性差、力学性能劣等问题。本项目采用半连续乳液聚合的方法一步合成出可控聚合物/硅复合结构纳米粒子,并利用提拉镀膜的方法将其涂敷在玻璃基材上,通过一定温度的热处理制备出闭孔型减反膜涂层。研究体系pH值、单体比例、硅烷偶联剂的类型及用量等条件对所形成复合纳米粒子涂敷出的减反膜折射率、减反效果以及耐候性、耐刮伤性、力学性能的影响。力争制备出多功能抗反射涂层。旨在从本质上提升减反膜的光学性能、耐候性和机械特性。通过理论计算与实验验证并举,探索减反膜实现的新途径。改变目前减反膜的生产工艺问题。本项目与现有的减反膜工艺相比,具有工艺简单,解决了环保问题(一般减反膜都需采用醇做溶剂,而本工艺全程采用水来在溶剂)。而且减反效果优异,目前在可见光波段较宽的范围能够达到99.5%以上的透过率。而且增透波段可以通过需求进行调整。 这个项目起源于与赛肯森公司的合作项目。这家公司的主要产品之一是减反膜。据该公司介绍,大规模制备减反率可以达到99.5%的减反膜是他们公司的核心竞争力。其产品一直出口。从此可见,前景比较乐观。后面我们可以考虑与该企业继续进行合作或者找一家更为合适的合作企业。
同济大学 2021-04-11
三氯蔗糖的生产制备
近年来,在我国,肥胖症、糖尿病、心血管病和龋齿等多发病的产生都与饮食习惯及膳食 结构有关。而长期以来,蔗糖一直是人类获取甜味食品的主要来源,作为一种高热量、相对低 甜度的食品配料,长期大量食用会导致肥胖症、高血脂、糖尿病和龋齿等疾病,因此,开发应 用安全健康的低热量、高甜度及具有功能性的非营养性甜味剂以满足健康、科学饮食需求显得 尤为迫切。因此,我国甜味产品发展重点之一就是安全性高,无营养、无热量的高倍甜味剂。 高倍甜味剂产品的特点是甜度高,用量少,而用量很少安全性就更高,而且单位甜度的成本也 都比蔗糖等传统甜味产品低很多,这也是拉动全球开发应用具有功能性的高倍甜味剂的主要动 力。三氯蔗糖在人体内几乎不被吸收,热量值为零,可供肥胖、心血管病和糖尿病等患者食 用。是一种新型功能性高倍甜味剂。目前三氯蔗糖已获得美国等约七十多个国家的批准使用, 其在世界范围应用比较多,迄今为止已在全球约3000多种食品中添加使用。
华东理工大学 2021-04-11
梯度涂层刀具及其制备方法
本发明公开了一种梯度涂层刀具及其制备方法,该梯度涂层刀具基体材料为高速钢,基体表面具有多层涂层,涂层为添加MoS2、BN和LaF3的硬质合金层和Al2O3基陶瓷层交替的梯度叠层涂层。刀具涂层采用激光熔覆方法制备,制备步骤为:(1)前处理;(2)熔覆硬质合金层;(3)熔覆Al2O3基陶瓷层;(4)交替熔覆硬质合金层和Al2O3基陶瓷层;(5)后处理。与现有技术相比,该刀具表面梯度涂层兼顾Al2O3基陶瓷和硬质合金的特点,具有较高的硬度和良好的韧性;MoS2、BN和LaF3的加入使得该刀具在较大切削温度范围内均具有良好的自润滑功效。该涂层刀具可应用于干切削和难加工材料的切削加工。
东南大学 2021-04-11
FDP系列金属盐的制备
本项目所开发的FDP系列金属盐包括1,6-二磷酸果糖钠盐、钙盐、镁盐、锶盐等。FDP是一种重要的细胞内代谢产物,可以调节糖代谢中若干酶的活性和恢复、改善细胞代谢水平。其产品作为微量元素补充剂广泛应用于食品及饲料添加剂、医药中间体等领域。国内需求额近5亿,国际需求额近30亿。鉴于其功效显著,近年来以20%的速度递增。本成果主要通过建立代谢网络模型和代谢流分析、利用酵母细胞糖酵解酶系,采用小分子化学物质调控代谢流量以及提高能量自耦联效率的方法,使得FDP对葡萄糖和磷酸盐的转化率达41.1%和92.7%。采用自行设计的连续离子交换系统进行分离,效率明显提高,收率达到92%,纯度达到99.4%。采用新型浓缩脱盐方法收率提高15%左右。首次提出萃取结晶体系结晶FDP,产品收率达95%,产品纯达99.5%,大大改善了产品的结晶性能。设计并发现了新化合物—果糖-1,6-二磷酸锶盐可用于治疗/预防骨质疏松以及性功能障碍,有望成为具有自主知识产权的一类新药。经江苏省科技厅鉴定,该项研究达到了国际领先水平,具有明显的技术优势和良好的应用前景。
南京工业大学 2021-04-13
生物法制备丁二酸
丁二酸是重大的碳四平台化合物,目前石化法生产污染大,成本高,严重抑制了其应用发展规模。利用可再生资源厌氧发酵制备丁二酸具有反应条件温和、污染小、原子经济性高的特点,且可有效地实现温室气体CO2的循环利用,是高效的绿色生产技术。在“十一五”国家高技术研究发展计划(863计划)支持下,南京工业大学依托国家生化工程技术研究中心和江苏省工业生物技术重点实验室,在箘株选育、厌氧发酵工程、有机酸分离纯化等关键技术研究中取得了重大突破,丁二酸发酵浓度达到70g/L,质量收率达到70%,生产强度达到2.0g/(L•h),提取收率达到85%,产品纯度达到聚合级的要求。目前生物法制备丁二酸的工艺成本低于石化法,具有了一定的竞争优势,研究水平处于国际先进、国内领先。与常茂生物化学工程股份有限公司合作,实现了丁二酸1000L发酵规模的中试生产,并正在建设500吨/年的生产线,为生物法制备丁二酸的产业化奠定了基础。与中石化北京化工研究院联合开发生物基PBS类聚酯的合成技术。研究表明,生物法制备丁二酸可直接达到聚合级要求,制备所得PBS类聚酯产品具有良好的生物可降解性。合作成果的应用对于加速PBS材料的应用与推广具有非常重要的意义。
南京工业大学 2021-04-13
普鲁卡因的制备新工艺
普鲁卡因(对氨基苯甲酸-β-二乙胺基乙酯)是一种常见的酯类局部麻醉药,是国内外临床广泛应用的基本药物之一。临床应用上刺激性及毒副性均较小,效果较好,且吸收快而麻醉时间短。近年来,其临床新用途不断增加,市场需求趋旺,日渐引起关注。传统的生产方法是以对硝基苯甲酸和二乙胺基乙醇为原料,以二甲苯为带水剂,共沸脱水,酯化得到硝基卡因。未反应的对硝基苯甲酸用氢氧化钠水溶液萃取,有机相即为碱析硝基卡因。将碱析硝基卡因用盐酸萃取得酸析硝基卡因。用铁粉还原法将酸析硝基卡因还原为普鲁卡因。铁粉还原法制备普鲁卡因工艺成熟,对设备要求低,收率较高,但其纯度较低,在产品中残留有处理过程中的铁、硫离子等离子,且生产过程中产生大量含芳胺的废水和铁泥,环境污染严重和腐蚀设备,且体力劳动强度大。新工艺用催化加氢法代替铁粉还原法。以雷尼镍为催化剂,氢气为还原剂,直接在二甲苯溶剂中还原硝基卡因为普鲁卡因。省去了铁粉还原法中用酸析出硝基卡因一步。由于不用铁粉还原,没有铁离子的引入,使产品品质大为提高。采用一次加料方式,使操作更加方便。反应温度80-1400℃,氢压2.0-4.0MPa,转化率大于90%,所得产品符合药典标准。加氢后的产品价值在大大提高,经济效益好,以年产50吨计,税利为100-150万元。
南京工业大学 2021-04-13
微纳结构光纤制备项目
项目简介本项目提出一种微纳结构光纤的制备方法和方案,可以实现光在微纳光纤中稳定传 输,并克服了微纳光纤在封装上的困难,所提出的微纳光纤制备工艺实现将对微纳光纤 的制备与封装结合,有效避免了由普通光纤直接拉锥制备微纳光纤存在的微纳光纤区机 械性能差、结构不稳定、易受外界环境干扰等缺点。制备完成的微纳光纤还可通过毛细 管将特殊的气体、液体或固体材料填充进石英管内,从而形成特殊包层结构的微纳光纤。 为基于微纳光纤在高非线性效应、超连续谱生成、超灵敏度光传感等应用提供理想的解 决方案。 相关研
江苏大学 2021-04-14
首页 上一页 1 2
  • ...
  • 86 87 88
  • ...
  • 938 939 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1