高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
配位聚合物多孔材料在化工吸附分离领域的研究与应用
丁二烯是产量最大的化工产品之一,其生产过程中需要耗费大量的能量和有机溶剂对成分复杂的C4烃类混合物进行蒸馏分离。利用多孔材料进行吸附分离是一种潜在的高效分离提纯方法,但分子较小、极性较大的丁二烯容易被吸附,在脱附过程中不但容易被残留的其它C4烃类污染,而且容易受热聚合。我们前期已经发现可以利用合理设计的超微孔亲水多孔材料对C2烃类实现反常的极性选择。针对丁二烯分子柔性显著小于其它链状C4烃类的特点,我们希望能进一步通过特殊的孔道形状控制这些柔性客体分子的构型,利用构型变化的能量差获得反常的吸附选择性和最优的C4烃类吸附分离顺序。形状尺寸合适的离散孔洞最有利于控制柔性客体分子的构型和并反转吸附选择性,而连续的孔道对客体分子的吸附扩散又是必须的。通过模拟计算,发现具有准离散孔洞的柔性多孔材料MAF-23在两种要求中取得平衡,实现了反常而且最优的C4烃类混合物吸附分离顺序。常温常压下将丁二烯、丁烯、异丁烯和丁烷混合物通过MAF-23填充的固定床吸附装置后,吸附最弱的丁二烯最先流出而且纯度很容易达到99.9%,同时可避免常规纯化方法中因加热而产生的丁二烯自聚问题。
中山大学 2021-04-13
全自动等温吸附仪
产品详细介绍主要性能指标及技术参数1.1基本性能单组分或多组分等温吸附/解吸温度:室温~100℃操作压力:40MPa系统最大压力:70MPa1.2样品缸、参考缸样品粒度:≤60目样品质量:200g参考缸体积:150ml参考缸数量:6个,外径70mm,长330mm样品缸体积:150mL样品缸数量:6个,外径430mm材料:不锈钢压力密封:专门的金属环密封压力源:气体增压泵加压装置:空压机1.3恒温装置油浴锅:60L*2个油浴尺寸:500mm(长)*480mm(宽)*240mm(深)温度设定:独立温区油浴循环:内置恒温油:附带1.4压力采集压力传感器:三线制压力传感器压力范围:0-40MPa额定压力:40MPa一体式气压计:精度±0.1%数量:12个输出:3mv/v1.5温度采集温度检测系统:温度传感器±0.1℃多通道精度模数转换器:16位1.6气体源:总供给:3气体输入:甲烷,氦气,二氧化碳压力:20MPa稳定性:3%每种气体都配置高压钢瓶1.7电动气体调节器总供给:3压力:40MPa稳定性:1%输入:0-1V增压压力:0.6Mpa1.6计算机控制计算机:主频:3.0GHZ,内存1GB,硬盘160GB自动控制:计算机自动控制系统软件:FINESORB-ISO数据采集软件FINESORB-IAO吸附/解吸数据处理软件多组分气体吸附/解吸数据处理软件提供中文版说明书1.7其他备件(另外):样品缸:1个手动针阀:3个气动针阀:2个RTD:2个 表头:6个高压气瓶:不同气体配3个不锈钢管:4米稳压电源:1个密封圈:4个等温吸附过程1、 样品室装样将预处理的煤样准备称重、迅速装入模型内。样品重量:用于测试的远洋重量不少于2kg。工业分析按照GB/T2121991《煤样的工业分析方法》执行。2、 气密性检查2.1充气  向系统充入氦气,压力高于等温吸附实验最高压力1MPa。2.2调节温度  系统温度调为储层温度。连续观测,系统密封良好,则进行下一步实验。3、 自由空间体积测定3.1温度测定温度设定为储层温度。3.2充气打开氦气瓶,向系统输入氦气,调节标准室压力值,然后关闭标准室阀门。3.3采集数据打开标准室阀门与样品缸阀门,待压力平衡后采集一组数据。体积实验。进行三次,三次之间允许误差为±0.1cm3 。3.4求得煤样的体积,计算出样品室内空白体积。4、等温吸附实验4.1实验压力的确定最高实验压力设置为储层压力的1.2倍,最低不少于8MPa。4.2实验压力点分布最高压力<8MPa,选6个实验点。最高压力在8MPa~12MPa,选8个试验点。4.3充气打开调节阀门和标准室阀门,向系统充入甲烷气体,调节标准室压力至目标压力。4.4数据采集达到目标压力,且温度稳定后,启动等温吸附实验程序采集数据。4.5吸附平衡时间确定根据实际情况确定,但不得少于12小时。4.6重复(3)到(5)步骤,直至最后一个压力点实验结束。数据处理过程1、 煤样体积和自由空间体积计算煤样的体积计算公式为:Vs= 式中:Vs-煤样的体积,单位为立方厘米(cm3  );P1-平衡后压力,单位为兆帕(MPa)P2-参考缸初始压力,单位为兆帕(MPa)P3-样品初始压力,单位为兆帕(MPa)T1-平衡后温度,单位为开氏温度(K);T2-参考缸初始温度,单位为开氏温度(K);T3-样品缸初始温度,单位为开氏温度(K);V1-系统总体积,单位为立方厘米(cm3 );V2-参考缸体积,单位为立方厘米(cm3 )V3-样品缸体积,单位为立方厘米(cm3 )Z1-平衡条件下气体压缩因子,无量纲,Z2-参考缸初始气体的压缩因子,无量纲,Z3-样品缸初始气体的压缩因子,无量纲求得煤样的体积,计算出样品缸内自由空间体积。自由空间体积是指样品缸装入煤样后煤样颗粒之间的空隙、煤样颗粒内部微细空隙、样品缸剩余的自由空间、连接管和阀门内部空间的体积之和。自由空间体积计算公式为:V1=V0-Vs式中:V1-自由空间体积,单位为立方厘米(cm3)V0-样品缸内总体积,单位为立方厘米(cm3)Vs-煤样的体积,单位为立方厘米(cm3  )2、 计算各压力点的吸附量根据参考缸、样品缸的平衡压力点的吸附量利用公式:PV=nZRT式中:P-气体压力,单位为兆帕(MPa);V-气体体积,单位为立方厘米(cm3  )n-气体的摩尔数,单位为摩尔(mol);Z-气体的压缩因子,无量纲;R-摩尔气体常数,单位为焦每摩开(U.mol-1.K-1);T-热力学温度,单位为开氏温度(K)。Vs=分别求出各压力点平衡前样品缸内气体的摩尔数(n1)和平衡后样品缸内气体的摩尔数(n2),则煤样吸附气体的摩尔数(n1)为: ni=n1-n2式中:ni-气体的摩尔数,单位为摩尔(mol);n1-平衡前样品缸内气体的摩尔数,单位为摩尔(mol);n2-平衡后样品缸内气体数,单位为摩尔(mol)各压力点的吸附气体体积(Vi);Vi=ni*22.4*1000各压力点吸附量V吸附:V吸附=V1/Go式中:V吸附=吸附量,单位为立方厘米每克(cm3/g)V1-吸附气体的总体积,单位为立方厘米(cm3)Gc-煤样重量,单位为克(g)数据计算及报告3、 计算VL和PL 根据Langmuir方程:式中: = + p—气体压力,单位为兆帕(MPa);V—在气体体积,单位为立方厘米VL-最大吸附容量,又称Langmuir体积,单位为立方厘米每克(cm3/g):P1-Langmuir压力,单位为兆帕(MPa).若令A-A/VL和B-   ,可以将方程(8)推导为p/V与p的函数: = + = p+ =Ap+B依据方程(9),可将实测的各压力平衡点的压力与吸附量数据绘制为以p为横坐标、以p/V比值为纵坐标的散点图。利用最小二乘法求出这些散点的回归直线方程及相关系数。进而求出直线的斜率(A)和截距(B).根据斜率和截距求出Langmuir体积(VL)和Langmuir压力(p1),即:V1=V/AP1=BVA=B/A4、 吸附等温线根据各平衡压力点吸附量V和压力值P绘制吸附等温线:5、 实验精度5.1重现性VL重现性相对误差不大于15%:P1重现性相对误差不大于15%。5.2重现性VL再现性相对误差不大于20%;PL再现性相对误差不大于20%。5.3样品实验质量P/V与P的相关系数R大于0.98.
浙江泛泰仪器有限公司 2021-08-23
高容量富锂锰基正极材料的合成与性能研究
本发明公开了一种富锂锰基正极材料及其制备方法。该方法采用共沉淀法制备前驱体[Ni(x-y/2)/x+(2-y)/3CoyMn((2-x)/3-y/2)/(x+(2-x)/3)](OH)2,然后采用高温固相法得到富锂锰基正极材料 Li[Li(1-2x)/3Nix-y/2CoyMn(2-x)/3-y/2]O2(0<x<0.5,0≤y≤0.15)。这些材料在 2.0-4.6V充放电比容量达到 200mAh/g 以上。本发明的制备方法工艺简单,成本低,适用于工业化大生产,所得到的富锂锰基正极材料在-20°C 下的放电容量可达到常温放电容量的 70%以上,可以广泛应用于电动汽车、通讯领域等。目前已经研究的体系有 Li[Li(1-x)/3Ni2x/3Mn ( 2-x ) /3]O2 , Li[Li ( 1-x ) /3NixMn ( 2-2x ) /3]O2 , Li[Li1/3-2x/3NixMn2/3-x/3]O2 ,Li1+x(Ni1/3Co1/3Mn1/3)O2+x/2 等。 
江西理工大学 2021-05-04
聚合物基复合材料表面金属化新技术
聚合物基复合材料表面金属化常用的方法有真空蒸镀金属法、真空离子镀金属法、电镀法、化学镀法、电铸法、表面直接喷涂金属法等。这些方法各有其优缺点:如真空蒸镀和真空离子镀的镀层厚度均匀,但所需设备昂贵且制件尺寸受设备大小限制,涂层较薄且制备成本较高。电镀法工序复杂,镀层附着力相对较低;化学镀是大多数电镀工艺中都必须涉及到的,通常作为塑料制品电镀的前处理工艺,其优点是镀层致密、孔隙率低、适用的基体材料范围广,可在金属、无机非金属及有机物上沉积镀层;缺点是镀液寿命短、稳定性差,镀覆速度慢、不易制备厚涂层,存在环境污染。电铸法可制取高光洁度、高导电性、高精度、内腔结构复杂的制件,但每做一个制件就需一个模具,模具成本高、生产周期长。热喷涂法是把金属颗粒加热到熔融状态后沉积到基板或工件表面形成涂层;但聚合物基板材料的熔点很低,热喷涂时熔融金属颗粒和高温焰流将对聚合物基板材料表面产生严重的破坏;而且由于热喷涂的加热温度较高,所制备的金属涂层由于氧化和孔隙的产生很难满足使用要求。 冷喷涂技术不需要或者只需要很少量的热量输入,加热温度低、颗粒飞行速度高,这就有效防止了热喷涂时的热影响,减少了基体表面三维畸变,涂层中氧化、相变的发生,涂层残余热应力小,可制备厚涂层;另外,与热喷涂一个相同的技术优势是通过机械手挟持喷枪或者把基体工件放在数控工作台上,能够实现对一些复杂表面、较大工件的喷涂,加工灵活,适应性强。目前可制备纯Al涂层和Al-Cu等多层结构。 已申请专利:“一种聚合物基复合材料表面金属化涂层的制备方法及装置”,中国发明专利申请号:201010588064.X.,专利申请时间:2010.12.14,专利公开日:2011.05.18
北京科技大学 2021-04-11
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了 Mg 纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的 Mg 纳米线。结果表明,改变载气流速、传输温度和沉积基底,可以控制 Mg 纳米 10线的长度和直径。测试结果显示,Mg 纳米线降低了脱附能垒,改善了热力学和动力学性能。实验结果显示,直径为 30-50nm 的 Mg 纳米线具有良好的可逆储放氢性能。 研究成果发表在 J. Am. Chem. Soc.,J. Phys. Chem. C,J. Alloys Compds 等期刊上,授权发明专利 2 项。
南开大学 2021-02-01
一种稀土铁基吸波材料及其制备方法
本发明公开了一种具有良好吸波性能的纳米晶稀土铁基吸波材料及其制备方法,该材料的特征在于 将配比为重量百分比为2%~70%稀土元素与5%~98%的铁以及少量掺杂元素熔炼成稀土-铁基合金,再在 0-700℃的温度范围内与氢气反应(氢爆方法)破碎成细小粉末或球磨成细小粉末,然后在100℃-1000℃ 温度范围内与氢气反应生成主相为稀土氢化物(RHx)和α-Fe的复合材料,最后将上述复合材料在低温 氧化或氮化或氮化加氧化,制备出稀土氧化物或氮化物/α-Fe为主的复合材料。这种材料具有吸波性能好, 屏蔽波段宽,耐腐蚀,抗氧化以及价格低廉的特点,可用于建筑电磁屏蔽、信息及通讯技术保密、军事隐 身技术等领域。
四川大学 2021-04-11
原位自生TiC或(TiC+TiB)增强钛基复合材料
钛及钛合金具有密度小、强度高、耐高温、耐低温、耐腐蚀、非磁性、线膨胀系数小等多种优点,特别是其比强度,在已有的材料中几乎是最高的,因此,钛主要应用在航空领域中以降低飞行器重量。随着科技的发展,原来的钛合金在某些方面已经不能满足现代航空、航天的需求。钛基复合材料既保持了钛的优良性质又具有比钛更高的比强度和比模量,可望成为航空航天与其它高技术领域中重要的结构材料。其中,原位自生复合材料,增强相是通过外加的化学元素之间发生化学反应而生成的。与传统的外加法制得的复合材料相比,原位自生钛基复合材料表现出以下优点:制备工艺简单,可以用钛合金传统的冶炼和加工的设备制备大尺寸的钛基复合材料,因此易于工业化生产;增强体和基体在热力学上稳定,因此在高温工作时,性能不易退化;避免了外加法带来的界面污染等问题;原位生成的增强相在基体中分布均匀,表现出优良的机械性能。而TiC和TiB共同的特点是:熔点高,比强度、比刚度高和化学稳定性好;物理和机械性能优良;与钛基体之间的热膨胀系数差别小。因此TiC和TiB是钛合金中较为理想的增强体,通过本研究开发的原位自生的TiC或(TiC+TiB)增强钛基复合材料,具有优良的机械性能。 主要性能指标1.室温抗拉强度大于1300MPa;2.室温拉伸延伸率大于6.0%;3.600℃抗拉强度大于850MPa;4.600℃拉伸延伸率大于8.0%。
上海理工大学 2021-04-11
飞秒激光脉冲制备硅基微纳结构光伏材料
太阳能作为一种洁净和相对易于获取的能源在未来的动力产品中将占有越来越大的比份。如何发展高光电能量转换效率、高可靠性和低成本的太阳能电池是目前太阳能利用领域所面临的关键问题。相对于第一代和第二代太阳能电池(转换效率<<50%),各国科学家纷纷研究不同的应用于第三代太阳能电池的新材料和新结构,目标是使光电转换效率大于5 0%。近年来,一种具有微、纳米量级特殊结构的光伏材料成为太阳能电池的研究热点。利用飞秒脉冲激光在极短的持续时间内激发出极大的峰值能量,其在硅片的相互作用过程中具有很强的非线性效应,聚焦烧蚀硅表面很小的一块面积,形成规则排列的微纳米结构。这种微纳米结构由于表面积增大,对入射光波有很大的吸收,且对光的敏感性提高了数百倍,这些性质对我们提高光电转换效率具有很大的指导意义。这种材料与本底未处理材料的性质相比,材料带隙减小,对光的敏感性提高了数百倍,这使得其对波长为250—2500 nm的入射光波有大于90%的吸收;另外,黑硅比传统材质的硅的比重低。这些奇特的光电和物理性质能进一步提高太阳能电池的光电转换效率。根据光吸收效率,激子光量子效率,化学电势效率以及填充因子计算总的光电转换效率,普通硅基太阳能电池光电转换效率只有1 5%,而基于微纳结构光伏材料的太阳能电池转换效率可望达到50%-60%。 针对国民经济可持续发展在太阳能光伏技术方面的重大需求,发展利用超短脉冲激光制备具有优异光电转化效率的微纳结构光伏材料的新方法,以及通过探测光伏材料中非平衡载流子的能带结构及微分负电导等特性,探知光伏材料的光电转换效率,从而筛选出转换效率较高的微纳结构光伏材料,最终在发展新型、高效太阳能电池的新原理和新技术方面取得创新性突破,为我国研发具有自主知识产权的高效第三代光伏电池打下坚实基础。
上海理工大学 2021-04-11
一种环氧树脂基复合材料及其制备方法
本发明公开了一种环氧树脂基复合材料及其制备方法,环氧树 脂基复合材料包括环氧树脂基体、以及均匀分散于所述环氧树脂基体 中的聚苯乙烯空心球和聚乙二醇,所述聚苯乙烯空心球的含量为所述 环氧树脂基体的 4.0vol.%~32.0vol.%,所述聚乙二醇的含量为所述环 氧树脂基体的 2.0wt.%~10.0wt.%。通过本发明,制备了一种具有良 好的力学性能和隔音性能的环氧树脂基复合材料,且该环氧树脂基复 合材料的制备方法步
华中科技大学 2021-01-12
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研 究,特别开展了 Mg 纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸 放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材 料的储氢性能,通过气相传输的方法制备了不同形貌的 Mg 纳米线。 结果表明,改变载气流速、传输温度和沉积基底,可以控制 Mg 纳米 线的长度和直径。测试结果显示,Mg 纳米线降低了脱附能垒,改善 了热力学和动力学性能。实验结果显示,直径为 30-50nm 的 Mg 纳米 线具有良好的可逆储放氢性能。研究成果发表在 J. Am. Chem. Soc.,J. Phys. Chem. C,J. Alloys Compds 等期刊上,授权发明专利 2 项。 
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 239 240 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1