高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
超临界二氧化碳发电系统技术
成果完成人瞄准1000MW超临界二氧化碳燃煤(sCO2)发电系统,主持了国家重点研发计划项目“超高参数高效二氧化碳燃煤发电基础理论与关键技术研究”。 本成果从系统和部件两个层面进行研究,被推荐为2020年度国家重点研发计划重点科技成果,并在2021年1月27日科技日报上做了报导。具体成果如下: 1、sCO2锅炉模块化设计:sCO2循环流量是水蒸气机组的6-8倍,导致S-CO2锅炉严重堵塞,发现机组效率惩罚效应。首次提出1/8分流减阻原理,在保持吸热量及循环流量不变条件下,将压降降低为传统设计的1/8,由此提出模块化锅炉设计,将锅炉压降减小到与水蒸气锅炉相当或更低水平,彻底解决大压降难题。 2、烟气热量全温区吸收:针对sCO2循环适合中高温热源,单个sCO2循环无法吸收烟气全温区热量,提出顶低复合循环,实现热量全温区吸收。提出能量复叠利用原理及设备共享,完全消除顶底循环效率差并简化系统。1000MWe级燃煤sCO2发电效率达到~50%,比水蒸气机组高3-4个百分点。 3、锅侧和炉侧综合调温方法:针对sCO2进入锅炉温度较高,抬高受热面温度,提出锅侧和炉侧综合调温方法,发明“冷热匹配、层级降温”原理,提出“上大下小+双炉膛+烟气再循环”的创新型锅炉设计。建成压力达26MPa的超高参数sCO2传热系统,提出超临界传热类沸腾理论,结合实验数据,给出了锅炉管发生传热恶化的临界判据。诞生第一台超临界二氧化碳燃煤锅炉原理样机。 本成果阐明了能量复叠利用原理,是能量梯级利用的继承和发展,消除了复合循环中顶循环和低循环的效率差,最大限度挖掘了sCO2燃煤发电系统的效率优势。并首次阐明超临界流体分子尺度下的非均匀物质结构,颠覆了人类对超临界流体物质结构的认知,首次将亚临界压力下的多相流体理论体系引入到超临界传热中,初步实现了亚临界和超临界压力下能量传递与转换理论的统一,达到国际领先水平。
华北电力大学 2022-07-06
一种风力发电系统背靠背变流器的容错控制方法及系统
本发明公开了一种风力发电系统背靠背变流器的容错控制方法及系统,该方法在确定背靠背变流器六个桥臂中发生故障的桥臂后,将剩余的五个健康桥臂重构为五桥臂变流器,利用双向晶闸管将原故障桥臂对应相连接至健康桥臂,该健康桥臂被定义为公共桥臂;为了避免容错控制下公共桥臂过流,检测公共桥臂的电流,若公共桥臂电流大于电流预警值,调节发电机转速,从而控制公共桥臂上发电机侧与网侧对应相的相位差在120。—240。内,实现风力发电并网系统的正常运行。本发明涉及的容错控制方法能够实现系统在变流器故障下的不间断容错运行,同时可以保持公共桥臂不过流,具有良好的鲁棒性。
东南大学 2021-04-11
高校智慧资助系统
建设智教智慧资助系统,通过其高效协同的后台分类处置能力,把高校学工资助事项进行整合和业务流程的约简化处理,运用大数据打通“最后一公里”,将线下的业务操作剥离开实体大厅转化为线上业务,实现高校学生资助工作的无纸化办公,让学生真正实现“最多跑一次”。 管理员可以灵活设定经困生等级(比如一般困难、困难、特别困难等)。 管理教师可以根据学校的经困生管理办法灵活设定经困生认定条件,在对应的条件下可以设置多条困难条件类型及对应的权重值、限制条件。 管理员可以灵活设定经困生申请计划,包括起止时间、对应认定条件、申报条件参数设置、申报对象。 学生通过移动端进行在线填写经困生申请材料,提交后系统可根据管理员设定的经困生等级条件自动给审核人员推荐申请经困生等级并可以手动调整,学生提交后可以实时查看审核进度。 班主任可以根据系统推荐的经困生等级自行根据实际条件进行手动确认等级,并保留推荐等级和班主任确认等级查询痕迹。 经困生认定条件需具备权重分配方案和认定版本的统一联动管理。 二级学院可以根据权限设置批量打包下载学生上传的经困生证明文件,并以学号+姓名方式保存。
吉林省智教软件有限责任公司 2025-05-16
高校报修管理系统
智教高校报修管理系统优化校园设施维修流程,提升服务效率与质量,满足学校师生及后勤管理部门的需求,维修完成后,能对维修服务质量(如维修效果、维修人员态度)进行打分评价,并可填写反馈意见,以便学校改进服务。 教师、学生可以通过手机端,点击报修服务、我要报修后,可以根据实际报修情况进行问题描述、上传图片等。学生可以实时跟踪维修进度,并对维修结果进行线上打分、评价。
吉林省智教软件有限责任公司 2025-05-16
超临界二氧化碳燃煤循环流化床锅炉及发电系统与发电方法
本发明公开了一种超临界二氧化碳燃煤循环流化床锅炉及发电系统与发电方法,锅炉包括炉膛、分离器、尾部烟道和位于分离器回料段中的外置式换热器,炉膛内设有冷却壁和中温过热器,外置式换热器内设有高温再热器和分别与冷却壁和中温过热器连通的低温过热器,尾部烟道内设有低温再热器、高温过热器、上级省煤器、下级省煤器和空气预热器,其中,高温过热器与中温过热器连通,低温再热器与高温再热器连通;锅炉的工质为超临界二氧化碳。本发明锅炉能有效控制冷却壁壁温,保证锅炉安全可靠运行且热效率高;发电机组趋于小型化,具有更快的负荷响应速度,深度调峰适应性强,充分发挥煤炭资源优势,提高能源利用率,保障能源安全。
东南大学 2021-04-11
潮流能发电装置
项目成果/简介: 轴流式潮流能发电装置是针对我国潮流能资源区潮流流速偏低的状况专门开发研制的,具有启动流速低、转换效率高等特点。机组采用半直驱变桨距控制的水平轴水轮机,利用变桨距机构,提高能量转化效率,实现最大能量捕获、低速启动和换向;水下实时监控系统实现了机组的运行状况监测和变桨距控制,同时保证了机组安全运行;基于GPRS技术实现了装置的远程数据采集与控制;机组的支撑结构采用了浮潜式载体专利技术,可通过注排水实现升沉,便于机组的拖航、移址、回收及机组的维护保养。项目阶段: 完成工程样机研发及海上示范运行阶段效益分析: 该成果在潮流能开发利用中具有广泛的推广应用前景。适用于我国潮流能资源区潮流流速偏低的状况,易于在潮流能发电规模化工程中应用,有利于产业化推进。知识产权类型:发明专利 、 软件著作权知识产权编号:ZL201510602258.3 ZL201610459673.2技术成熟度:通过中试技术先进程度:达到国内领先水平成果获得方式:独立研究获得政府支持情况:无
中国海洋大学 2021-04-11
潮流能发电装置
轴流式潮流能发电装置是针对我国潮流能资源区潮流流速偏低的状况专门开发研制的,具有启动流速低、转换效率高等特点。机组采用半直驱变桨距控制的水平轴水轮机,利用变桨距机构,提高能量转化效率,实现最大能量捕获、低速启动和换向;水下实时监控系统实现了机组的运行状况监测和变桨距控制,同时保证了机组安全运行;基于GPRS技术实现了装置的远程数据采集与控制;机组的支撑结构采用了浮潜式载体专利技术,可通过注排水实现升沉,便于机组的拖航、移址、回收及机组的维护保养。
中国海洋大学 2021-05-09
纯低温余热发电
纯低温余热回收发电项目是利用150℃以上、400℃以下的工业余热产生的低品位蒸汽(低压、低温),来推动专门设计的双压低参数的汽轮机组做功发电。它是先进技术和环保要求相结合下的必然趋势和产物,是控制大气污染,保护臭氧层,减少能源浪费的有效手段和途径,也是相应企业提高能源利用效率,降低成本,提高产品市场竞争力,减少温室气体排放和保护环境的重要措施之一。 纯低温余热回收发电技术经过十年的发展日益成熟,国内已建成多座纯低温余热发电站,其技术经济的可行性,已越来越受到人们的高度重视,北京科技大学经过多年研究,使其技术更适合钢铁行业。 新工艺收集钢铁生产过程中产生的高、低温废热空气,经高效降尘设备后进入余热锅炉,由余热锅炉产生过热蒸汽,再由过热蒸汽或饱和蒸汽推动汽轮机带动发电机组进行发电。结合低温余热发电的技术特点并进行技术创新,开发适应低参数、双压力(单压力)的余热回收汽水热力系统;吸收国外先进技术并进行技术创新,科学的、梯次利用生产过程中产生的高、低温废气余热,提高余热的回收利用效率; 可最大化提高余热利用率,立式布置、高效受热面、自然循环的结构减少了锅炉的占地面积,降低了工程的整体造价; 具有自动负荷调整、自动并网控制功能的低参数双压(单压)进汽式汽轮机,符合低温余热电站的生产运行特点,最大化的提高了余热利用率。 低温余热发电核心技术: 废气温度的梯次科学利用。 低能耗、高效率的余热回收系统的技术和装备。生产和余热发电系统的协调控制和管理。
北京科技大学 2021-04-13
风力发电并网逆变器
石油生产的主要成本为电费,为了降低游梁式抽油机的使用成本,在风能资源比较好的地区可以采用风电互补供电系统有效降低对电网的用电量。通常4台30kW的抽油机通过一台变压器供电,因此可以利用1台50kW的风力发电机向抽油机提供80%的用电量,不足部分可以通过电网补充,这一过程是通过1台50kW的并网逆变器实现的。本产品利用先进的控制策略实现了风能的优先利用,最大限度地实现节能减排、降低成本的目标。
北京理工大学 2021-04-14
高效潮流发电技术
1 成果简介潮流发电技术是利用适当的能量转换装置,将由海洋或河流水面的自然升降造成的水流动能,或者因为太阳能输入不均而形成海水流动所致的动能转化为电能的技术。潮流发电属于一种新型的清洁、可再生能源利用方式。 潮流发电的主要发电装置位于洋面或河面以下,基本不占用或占用极少陆地面积,且没有类似风力发电机的噪声,是一种被人们普遍看好的新能源。而且, 潮流发电不需要建设大坝或堤堰,是借自然的流动直接通过水轮机获取能量。所以潮流发电涉及的工程投资很少,装置相对简单,可以在交通欠发达的山村、渔村及海岛建设独立的电源系统,能够有效解决当地人民的生产和生活用电、降低电力成本。 清华大学在水能和海洋能的工程利用方面进行了长期研究;研究了适合潮流发电的水轮机转轮及叶片翼型,获得了多项发明专利;利用先进的 CFD 技术模拟发电装置的各种运行工况,并优化了水能转化机构。目前单机的发电功率为 1.5~10kW,效率达到国际领先水平。2 应用说明潮流发电技术主要用于建设孤立电源系统,或在获得特殊许可情况下向电网供电。在进行发电厂站选址设计时,需开展充分调研,获取必要的信息,如海洋或河流的水文数据(如常年的水流速度、水位、含沙量等)、对电能质量及容量的需求、储能方式等。 潮流发电技术不涉及建设移民,工程量小,发电装置的安装简单、便利,基本上不抬高洋面或河面,对生态环境没有影响。因此,潮流发电技术除了适用于能源相对缺乏的我国东部和东南沿海地区以开发丰富的海洋能外,尤其适合在偏远山区、西藏等生态脆弱的地区开发内陆河流的水能,满足社会发展和人们生活的需要。3 应用范围潮流发电技术一般适用于开发非集中的河流水能和海洋能,因而发电机组的单机容量一般小于 10kW(尤其在海洋环境中)。如果在内陆河流上开发电能,配置相应的变速装置后可达到数百 kW。潮流发电技术最佳的应用流速为 2.5~6 m/s。流速在 1.0~2.0 m/s 时,属于技术可利用范围,但随着流速降低项目经济性变差。
清华大学 2021-04-13
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 551 552 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1