高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
PWM气动伺服阀(产品)
Ø  成果简介:PWM气动伺服阀是一种利用开关元件实现线性控制的新型气动伺服阀。其主要特点是工艺性好、控制精度高、动态性能好、结构紧凑。该伺服阀由控制器、控制阀组成,其工作压力分为高压(1MPa至10MPa或更高,可称为高压PWM伺服阀)和低压(1MPa以下,可称为工业用伺服阀),流量范围按需要设计。Ø  项目来源:自行开发Ø  技术领域:先进制造Ø  应用范围:应用于各种位置、
北京理工大学 2021-01-12
智能伺服压力机
伺服压力机比较广泛应用于发达国家 , 西班牙发格 ( FAGE) 、 日本网野 ( AMINO) 、 日本小松 ( KOMATSU) 、德国舒勒 ( SCHULER ) 等压力机制造企业相继推出了多种传动结构、不同规格的伺服压力机,几乎垄断了所有高端压力机的市场。由于国民经济的快速增长、市场国际化和人们消费观点的上升,对制造产品的流线型和个性化要求, 各行业也引进了很多的国外的制造装备。由于伺服压力机制成品的高精度和良好的工作环境 ,而且还具有节能的优点,对当前国内节约型社会更具有意义。 浙大团队针对大功率低扭矩伺服电机的扭矩输出特性 ,研究了基千电流控制的控制策略, 开发了伺服冲压工艺控制系统, 实现了转速、转向的高效控制, 极大提高了伺服冲压工艺的灵活性、准确性和可靠性。
浙江大学 2023-05-10
PWM气动伺服阀(产品)
成果简介:PWM气动伺服阀是一种利用开关元件实现线性控制的新型气动伺服阀。其主要特点是工艺性好、控制精度高、动态性能好、结构紧凑。该伺服阀由控制器、控制阀组成,其工作压力分为高压(1MPa至10MPa或更高,可称为高压PWM伺服阀)和低压(1MPa以下,可称为工业用伺服阀),流量范围按需要设计。 项目来源:自行开发 技术领域:先进制造 应用范围:应用于各种位
北京理工大学 2021-04-14
重载机械装备多缸协同控制液压伺服系统的开发与应用
大型重载机械装备是是我国基础设施、资源开发和国防建设急需的重大技术装备。这类装备具有重承载、强冲击和极端环境运行的特点,液力驱动工作中大功率传递和液-固耦合现象极为突出。 基于电液控制发明了阀控缸液压伺服系统的位置和压力主从控制方法,解决重载机械装备运行过程中位置和压力耦合干扰问题,实现多缸液压伺服系统位置和压力的精确控制。同时发明了液压滚切式金属板剪切机的液压系统,通过建立多变量解耦矩阵和多缸运动方程以及无节流损失的压力和位置双向精确控制方程,实现了液压泵、蓄能器组和伺服阀的同步控制,提高了阀控缸液压伺服系统的运动平稳性和可控性。提出多缸液压系统失稳判定方法,得到液压伺服系统稳定运行的必要条件,提高大型重载设备的稳定性。
太原科技大学 2021-05-04
机械臂无模型视觉反馈控制及其自适应操作应用研究
一、项目简介 随着科技进步和社会需求的发展,机器人手/臂除了工业生产,也越来越多用于服务人类的其它各个领域,这必然会使机器人承担比工业中更加多样的操作任务,面临更加多变的工作环境。因此,国内外对非结构自然环境下、具备自主操作能力的机器人的研究十分重视。当前,具备视觉感知能力的机器人已被公认为机器人发展的主流趋势,将视觉与机器人操作相融合,是对人类行为的模拟,由此产生的视觉伺服控制方法为机器人自主操作能力的实现带来了新的思路,代表了机器人的先进控制技术,也是促进机器人智能化发展的一个重要驱动。可以预见,未来的视觉系统将会成为机器人名副其实的眼睛,视觉伺服技术在机器人自主操作中将具有不可替代的作用。 视觉伺服利用视觉传感器提供的环境信息对机器人运动进行实时反馈控制,涉及机器人机械几何设计、运动学和动力学、自动控制理论、计算机视觉图像处理和摄像机标定等,是智能机器人领域中具有重要理论意义的研究课题之一。迄今为止,机器人手/臂的视觉伺服方法在太空遥操作、机器人手术、水果采摘、工业装配、焊接、抓取以及微操作等方面得到越来越多的应用。然而,现阶段可实际应用的方案主要面向特定的标定环境、模型参数已知,机器人操作是编码定式的,不具备模型未知条件下的自主操作能力,特别是当面向未来的刚-柔-软体共融机器人时,其柔型结构造成的运动模型及参数的变化与不确定性,必然使现有确定模型的研究方法失效。因此,无模型(目标几何模型,手眼标定模型,机器人运动模型)、非结构环境下的自适应操作对机器人提出了新挑战,是机器人手臂(尤其柔型手臂)视觉伺服控制研究的难点与前沿问题,不断深入对非结构环境下、无模型的机器人手/臂视觉伺服控制的研究具有重要的理论和现实意义。 在非结构自然环境下使机器人像人一样协调自适应操作是当今机器人研究领域的一项尚未实现但又令人感兴趣的研究工作。从理论上看,非结构自然环境下实现机器人柔性操作,就当前研究依靠单一的控制器设计是困难的。因此,本项目借鉴人的手眼协调操作是自适应学习过程,涉及智能进化和行为优化,将随机动态规划理论,结合约束规则与最优化控制,探索一种变参手眼关系,实现机器人在非结构自然环境下的自适应操作。 二、前期研究基础 研究团队一直致力于机器人视觉反馈控制的研究。在基础理论研究上,针对无标定视觉伺服控制方案与设计,均提出了一些新型方法,有扎实的理论基础和知识积累,并不断跟踪和深入在无模型视觉伺服控制的方面研究和前沿问题。目前,已经着手在无模型视觉伺服的可靠性、稳定性控制方面做了充分的探索工作:针对机器人无标定全局稳定操作问题,研究了一种鲁棒卡尔曼滤波(RKF)合作Elman神经网络(ENN)的全局稳定视觉伺服控制方法;提出了一种基于网络辅助尔曼滤波状态估计的无标定视觉伺服方法,提高伺服系统的鲁棒性。同时,立足机器人发展前沿,建立了多模特征深度学习抓取系统,在无结构环境下实现了机器人智能抓取与定位。 已发表的与项目相关的主要论文有: [1] 仲训杲,徐敏,仲训昱,彭侠夫.基于多模特征深度学习的机器人抓取判别方法.自动化学报,2016,7(42), pp:1022-1029. (EI) [2] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robots Visual Servo Control with Features Constraint Employing Kalman-Neural-Network Filtering Scheme. Neurocomputing, 2015, 151(3), pp:268-277 (SCI)  [3] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robust Kalman FilteringCooperated Elman Neural Network Learning forVision-Sensing-Based RoboticManipulation with Global Stability. Sensors, 2013, 10(13), pp:13464-13486. (SCI) [4] Xungao Zhong, Xiafu Peng, Xunyu Zhongand Lixiong Lin. Dynamic Jacobian Identification Based on State-Space for Robot Manipulation. Applied Mechanics andMaterials, vols. 475-476 (2014)pp: 675-679.(EI) [5] Xungao Zhong, Xiafu Peng, Xunyu Zhong and Xueren Dong. Multi-Channel with RBF Neural Network Aggregation Based on Disparity Space for Color Image Stereo Matching. IEEE 5th International Conference on Advanced Computational Intelligence (ICACI), 10(2012) PP:620-625. (EI) [6]XUNGAO ZHONG, XIAFU PENG, XUNYU ZHONG. NEURAL-BAYESIAN FILTERING BASED ON MONTE CARLO RESAMPLING FOR VISUAL ROBUST TRACKING. Journal of Theoretical and Applied Information Technology, 2013, 2(50), pp: 490-496. [7] Xungao Zhong, Xiafu Peng and Xunyu Zhong. Severe-Dynamic Tracking Problems Based on Lower Particles Resampling. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014, 12(6), pp:4731-4739. [8] Xunyu Zhong, Xungao Zhong and Xiafu Peng. Velocity-Change-Space-based Dynamic Motion Planning for Mobile Robots Navigation. Neurocomputing. 2014, 143(11), pp:153-163. (SCI) [9] Xunyu Zhong, Xungao Zhong, Xiafu Peng. VCS-based motion planning for distributed mobile robots: collision avoidance and formation. Soft Computing,2016,5(20), pp: 1897-1908. (SCI) [10] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于雅可比预测的机器人无模型视觉伺服定位控制, 控制与决策, 已在线发表, 2018. [11] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于图像的机器人非标定视觉反馈控制全局定位方法, 厦门大学学报(自然科学版), 已录用, 2018. 三、应用技术成果 (一)基于多模特征深度学习的机器人抓取判别 研究了多模特征深度学习及其在机器人智能抓取判别中的应用,该方法针对智能机器人抓取判别问题, 研究多模特征深度学习与融合方法. 该方法将测试特征分布偏离训练特征视为一类噪化, 引入带稀疏约束的降噪自动编码 (Denoising auto-encoding, DAE), 实现网络权值学习; 并以叠层融合策略, 获取初始多模特征的深层抽象表达, 两种手段相结合旨在提高深度网络的鲁棒性和抓取判别精确性. 实验采用深度摄像机与 6 自由度工业机器人组建测试平台, 对不同类别目标进行在线对比实验. 结果表明, 设计的多模特征深度学习依据人的抓取习惯, 实现最优抓取判别, 并且机器人成功实施抓取定位, 研究方法对新目标具备良好的抓取判别能力. (二)无标定视觉伺服解决方案及其机器人操作应用 研究了无标定视觉伺服方法及其在机械臂任务操作中的应用。首先提出视觉伺服目标:假设机器人或者摄像节的模型参数未知或者部分未知,视觉伺服的目标是使用摄像节作为传感器,引导机械臂运动,使当前图像特征收敛到期望图像特征,从而完成定位或者跟踪的任务。 手眼协调关系描述。关节图像雅克比矩阵定量描述了机械臂关节变化引起图像特征变化,它是关节-图像映射的局部线性化矩阵。 建立图像雅克比的在线估计器。将关节图像雅克比矩阵的每一个元素作为辅助系统的状态,建立辅助系统的状态方程;摄像机提取到的图像特征作为测量值,建立辅助系统的观测方程。根据Kalman滤波器理论,我们设计了对关节图像雅克比的在线实时估计算法。 构建基于图像矩的目标函数。为了避免传统的基于点特征的缺陷,例如点特征的标记、提取与匹配过程复杂且通用性较差问题。构建基于图像矩的图像特征向量完成视觉伺服任务,来提高视觉伺服系统的稳定性和可靠性。 四、合作企业 厦门万久科技股份有限公司是一家集销售、软件研发、技术服务、加工技术整合为一体的高新技术企业。目前公司的经营范围涉及CNC软件开发及数控系统销售、CNC控制零件销售及专业维修;工艺优化、机台升级与技术改造、工程配电与软件优化、专用机控制系统开发、多轴机的设计与开发、机台精度检测与校正优化服务等。公司是国际知名生产制造企业——富士康的产品供应商和技术服务商。    
厦门大学 2021-04-11
基于计算机视觉和神经网络的浮选控制系统
浮选技术是目前矿业中矿物分选主要采用的工艺方法。传统的浮选控制过程是通过各种测量仪器,分析测量矿物的品位、浮选回路中的pH值、药物浓度等参数,根据分析得出的数学模型来调整加药量,以使浮选过程处在最优状态下。但实际上,由于浮选过程十分复杂,影响浮选过程的因素非常多,所获得的数学模型并不能和实际很好吻合,因而控制过程一般并不能处在最优状态下。这是浮选控制过程的
西安交通大学 2021-01-12
教学视觉机器人 视觉教育机器人 视觉教学机器人
产品详细介绍珠海市华普自动化科技有限公司网址 http://huapu.114ct.com/ 视频www.tudou.com/home/_75709667http://u.youku.com/user_show/id_UMjY2NTE3NTY4.htmlhttp://you.video.sina.com.cn/pnpnpnpnhttp://pnpnpnpnpn.51sole.com/ 视觉教育机器人   视觉教学机器人(机器人含视觉系统5.8万)珠海市华普自动化科技有限公司视觉教育机器人用视觉来做测量和判断,机器人视觉(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素位置、分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,输出位置或判别信号来控制现场教学机器人的动作。我公司视觉教育机器人人有以下两款:1|、2-6轴轨道机器人2-6轴轨道机器人由X,Y,Z,R,L等6关节/旋转轴6轴组成。机身整体高強度铝合金材,坚固耐用,惯量小,动态性能稳定,长时间使用不变形,精度稳定,使定位精度更加精确。主电机采用100-1000W伊莱斯伺服电机,重复定位精度±0.05mm。配电气控制箱。供电电源:220V、50Hz;电源容量:52KVA。机械臂粗壮牢固,转动灵活。工作范围500*500mm。 2、3-6自由度通用机器人3-6自由度通用机器人,采用垂直多关节串连结构,步进和伺服电机驱动,最大工作负载2.5kg ,重复定位精度±0.05mm。    产品特点:1、6轴联动,采用5.6寸液晶屏执行ISO国际标准G代码;2、采用多层线路板,32位高性能的CPU和超大规模可编程器件FPGA,系统的整个工艺采用表贴元器件,从而使整套系统更为紧凑;3、采用多达20级的运动指令缓冲区运动控制芯片,特别适合高速多线段或圆弧连续插补的运动控制;4、20路输入,20路输出接口;5、全光耦隔离,抗干扰性强,运行稳定;6、有手动,自动,归零,编辑,录入操作; 视觉系统配件选配说明(也可根据需要选择) 序号  名称  规格型号 1  工业数字相机  高分辨率工业相机  MV-1300UC  高速工业相机  MV-VD040C 2  工业镜头  百万像素工业镜头  2514MP  工业缩放镜头  ZL0920 3  LED光源  环形光源  AFT-RL100  平行光面光源  AFT-BL100  条形光源  AFT-WL100 4  软件  机器视觉图像处理软件  MV-MVIPS 5  光源控制器  模拟光源控制器  AFT-ALP2415  数字光源控制器  AFT-DLP2430  另外,机器人视觉细分应用: 模具残留物自动检测(模具保护), 标准件筛选 适用于螺丝、螺母、垫片、螺母夹、轴套等标准件;检测类型:表面缺陷、尺寸测量、螺纹检测、特征检查等。 非标件检测 适用于汽车零配件、电子零配件、机械零配件、医疗器械;检测类型:表面缺陷、尺寸测量、特征检查、装配检查等。 印刷字符检测(RVT-KBI) 适用对象:手机按键、计算机键盘、仪器仪表等; 检测内容:印刷字符印刷质量、按键错误、字符错误、字符偏移等。一维码、二维码识别,数字、字符识别,颜色识别等; 检测内容:数据读取,字符识别,颜色判断等。珠海市华普自动化科技有限公司  网址 http://huapu.114ct.com/      http://pnpnpnpnpn.51sole.com/联系电话:13417736537   0756-7796528  13267957849 联系人:吴先生   电子邮件: 1113789835@qq.com  QQ:1113789835    http://pnpnpnpnpn.51sole.com/ http://pnpnpnpnpn.tgshebei.cn/usercplist.aspx视频:www.tudou.com/home/_75709667 http://u.youku.com/user_show/id_UMjY2NTE3NTY4.htmlhttp://you.video.sina.com.cn/hpzdhkj
珠海市华普自动化科技有限公司 2021-08-23
一种用于减小机床伺服进给系统跟踪误差的方法
本发明公开了一种用于减小机床伺服进给系统跟踪误差的方法, 其包括如下步骤:1)对机床伺服进给系统进行建模,获得伺服进给系 统的系统模型;2)建立机床伺服进给系统的摩擦力数学模型并辨识参 数;3)利用卡尔曼状态观测器对伺服进给系统的位置变化进行预估, 根据预估的位置变化计算伺服进给系统的补偿摩擦力,根据计算的补 偿摩擦力对伺服进给系统的摩擦力进行实时动态补偿。本发明通过卡 尔曼观测器实现对摩擦力的预估,并通过对摩擦力的补偿从而达到对系统跟踪误差进行精确控制的目的,使得系统能实时观测和预估摩擦 力实时变
华中科技大学 2021-04-14
种电液伺服阀叠合量测量装置及其测量方法
本发明涉及一种电液伺服阀叠合量气动测量装置及方法。本装置及系统对电液伺服阀的进油腔或回油腔提供稳定的气压,驱动阀芯缓慢及微量的移动,采集阀芯运动过程中气体流量、阀芯位移数据,并进一步计算出电液伺服阀各工作边的叠合量。本装置及系统主要包括:电动平移台、接触式位移传感器、流量控制器、配气座、气动滑台、气爪、气路系统等。电动平移台带动阀芯做缓慢及微量移动;气动平移台实现工艺壳体的压紧、阀芯的夹紧、位移传感器与气爪的接
华中科技大学 2021-04-14
高功率密度伺服电机
高功率密度伺服电机是一种采用紧凑型结构的新型稀土永磁电机。该电动机极槽最优化配合,使电机体积、成本、加工性能、电机力能指标达到最佳,同时对力矩波动具有较强的抑制作用。高密度伺服电机和高精度磁编码器以及驱动控制器三个部分可以组成高精度驱动控制系统。是先进制造技术的基础,其应用范围非常广阔,如数控机床、精密电子装备、工业自动化装备、工业机器人、航空、航天等领域。
哈尔滨工业大学 2021-04-14
首页 上一页 1 2 3 4 5 6
  • ...
  • 721 722 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1