高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
酶水解蚕蛹蛋白制备免疫活性多肽
研究内容 :本研究采用复合酶法水解蚕蛹蛋白制备免疫调节活性多 肽,得到最佳的水解工艺条件。在最佳水解条件下,酶解后蛋白质得率为 57.24%,小分子多肽得率为 32.16%。该结果达到了计划指标,即蛋白质 得率>40%,小分子多肽得率 >20%。另外,本研究探讨了水解条件与分子 量大小,分子量大小与免疫调节活性的关系,同时建立了毛细管凝胶电泳 测定蚕蛹多肽分子的检测方法。 技术特点 :本研究
南昌大学 2021-04-14
用于残留农药检测的酶电极
本技术提供了一种易于产业化制作和一次性使用的用于残留农药检测的酶电极,其制备方法简单,性能稳定,电极的重复性好,重量轻,易于携带,适用于敌百虫检测传感器产业化的实际应用。其优点在于:丝网印刷技术是目前制备一次性使用生物传感器电极的主要方法。工艺成本低,适于产业化生产中价廉的要求,有利于制成一次性产品,方便客户。丝网印刷技术灵活性和实用性的特点使其在制作电极时不受形状、大小等限制,易微型化和集成化,可制成不同规格的酶电极产品,丰富产品种类。丝网印刷可以进行工
南开大学 2021-04-14
苯一步羟基化合成苯酚的绿色合成工艺
成果描述:苯酚是重要的基本有机化工原料,在工业上具有广泛的用途,其需求量大,主要用于生产双酚A(亚异丙基二酚)和酚醛树脂,也用于生产己内酰胺、苯胺、烷基酚、脂肪酸等产品, 此外,苯酚还可直接用作化学试剂、防腐剂和消毒剂。近年来,由于电子通讯、汽车工业和建筑业的迅猛发展,苯酚的一些下游产品需求增长较快,相应带动了对苯酚需求的强劲增长,世界苯酚需求大约以年均3%~4%的速度增长。目前世界上生产苯酚的主要方法有异丙苯法、甲苯-苯甲酸法。其中异丙苯法是目前世界上生产苯酚最主要的方法,其生产能力约占世界苯酚总生产能力的92 %,目前,苯酚合成工艺正向无废、少废、不联产丙酮技术发展。 本成果提供原料易得、价廉、制备成本低、性能稳定、寿命长、可重复使用的催化剂。采用活性炭直接作为苯羟基化制取苯酚的催化剂,可获得单程收率12%,选择性75-80%,重复10次左右活性保持基本不变;经硝酸氧化改性的活性炭浸渍负载硫酸铁后烘干,制得载铁活性炭,采用载铁活性炭作为催化剂,可实现温和条件下(30℃,接近常温)高选择性制取苯酚,收率可提高到20%,选择性达到90%以上;采用连续流动反应器体系,在优化的工艺条件下,最好可得到苯酚收率28.1%和选择性大于98%。此成果中的载铁活性炭有较好的的实用性,可用于取代苯的环氧化。市场前景分析:该项技术可应用于化工生产企业,使用该项技术,可以避免副产物,苯酚单程收率高,原料可回收进一步使用,生产过程更容易达到环评要求。与同类成果相比的优势分析:催化剂活性评价: 30 °C、苯:H2O2为 1:3、载铁催化剂用量0.5g、反应时间4~7 h,苯酚收率> 20 %。 催化剂稳定性评价: 30 °C、苯:H2O2为 1:3、载铁催化剂用量0.5g、反应时间4~7 h,催化剂重复3次,活性保持基本不变。 国内先进。
四川大学 2021-04-10
氨法脱硫吸收产物+4价硫氧化系统及其优化调控方法
(专利号:ZL 201510464978.8) 简介:本发明公开了一种氨法脱硫吸收产物+4价硫氧化系统及其优化调控方法,属于大气污染治理技术领域。本发明中首先确定了氨法脱硫系统中的模型参数;输入上述模型参数,并设定一初始pH值、氧化空气量Q以及S4+和S6+的初始浓度,利用+4价硫的氧化率模型计算浆液池内+4价硫的氧化率;将计算得到的+4价硫氧化率带入进行检验,若不成立,则调整和的值重新计算,直至成立,并将得到的氧化率与工程中的设定值进行比较,并通过调整模型中的pH值、氧化空气量Q、和的值,使+4价硫的氧化率能够满足工程要求。本发明中的氧化率模型能够对氨法脱硫吸收产物+4价硫氧化系统的设计和运行提供理论指导,进而提高氨法脱硫技术的稳定性和经济性。
安徽工业大学 2021-04-11
高浓度氨氮废水处理与资源化技术及示范
1. 背景随着工农业生产的不断发展和人民生活水平的提高,氨氮的排放量急剧增加,已成为环境的主要污染源并引起了社会各界的关注。氨氮是引起水体富营养化的主要因素之一,对饮用水的安全构成一定的威胁。如何进一步削减工业废水氨氮/总氮的排放总量,是改善水质富营养化状况的根本措施。2. 关键技术:高效吹脱与氨资源化技术及装置3. 技术原理本项目针对传统氨氮吹脱技术目前存在的缺点,通过对氨吹脱塔填料及塔内件结构等的改进,强化气液传质过程,在提高氨去除效率的同时,降低气液比,缩短吹脱时间,从而显著降低能耗;同时开发新型氨吸收-解吸溶剂,采用高效吸收-解吸技术获得一定浓度的氨水,从而实现吹脱气中氨的高效回收与资源化,同时吸收-解吸溶剂能循环使用,从而消除二次污染,变废为宝,进一步降低氨氮吹脱技术的运行成本;进而运用集成化技术,对氨氮吹脱技术和氨高效回收资源化技术进行优化集成,形成高效、节能、低成本的高浓度氨氮废水处理与资源化预处理集成技术,满足工业企业对高浓度氨氮废水处理的技术需求。
南京工业大学 2021-04-13
靶向鞘氨醇转运受体(SPNS2)的抗肿瘤药物开发
磷酸鞘氨醇转运蛋白(Spns2)是磷酸鞘氨醇转运过程中的关键 蛋白,多项研究表明,Spns2 在肿瘤转移过程中发挥着重要作用,是 抗肿瘤转移药物开发的新型靶点,国内外尚未有以该靶点开发的药物上市。具有较大的市场机遇。 本项目组前期研究中筛选出了一系列 Spns2 抑制剂,发现候选药 物 S1P-A1 对肿瘤转移具有很好的抑制作用。体外研究结果显示其对 乳腺癌,结肠癌等肿瘤细胞的转移具有很好的抑制作用,对部分细胞 的 IC50 小于 1µM,体内实验结果显示其对黑色素瘤、乳腺癌、肝癌 的肺转移抑制率可达 90%以上,显著延长模型小鼠的生存期,有望开 发为抗肿瘤转移的 1 类化药新药。 目前该药的成药性评价工作已经基本完成,该药成药性良好。药 学研究工作包括药物的结构确证、质量研究、加速稳定性及长期稳定 性研究工作已经完成;药代动力学研究已经完成,初步获得了药物的 药-时曲线,达峰时间及达峰浓度;药物制剂研究工作基本完成,药物 可以制备成口服片剂、胶囊剂、散剂、注射剂等;药物的安全性评价 预实验已经完成,该药对成年大鼠无明显毒性。该项目后期将进一步 对候选药物 S1P-A1 进行临床前研究,按照 CFDA 的要求,完成正式 的药效学实验及药学研究,药代研究和安全性评价试验,最终申报临 床试验批件。 预期产生的经济效益: 临床肿瘤病人的死亡 90%是由于肿瘤转移引起的,肿瘤的术后转 移亦是临床常见现象。目前抗肿瘤转移药物疗效并不理想,而且毒副 作用较大。抗肿瘤转移药物的市场潜力巨大,该药若能开发成功将可 以填补抗肿瘤转移药物缺乏的市场空白。 合作方式及条件: 希望进行专利转让,或者与投资者共同开发,申报临床试验批件, 并进行临床研究。
南开大学 2021-04-13
水泥生产中SNCR烟气脱硝系统的喷氨量控制方法
一种水泥生产中SNCR烟气脱硝系统的喷氨量控制方法:①在水泥窑分解炉内设置至少两层喷氨区;②在喷氨区进口设置温度传感器、烟气流量检测传感器和第一NOx浓度检测传感器,在水泥窑分解炉的出口设置第二NOx浓度检测传感器和NH3浓度检测传感器;③配备安装了喷氨量BP神经网络预测模型的喷氨量控制系统,根据接收到的水泥窑分解炉进口的烟气温度、烟气流量、烟气中NOx的浓度信息和水泥窑分解炉出口烟气中NOx的浓度、NH3浓度信息通过喷氨量BP神经网络预测模型给出水泥窑分解炉内的总喷氨量及各层喷氨区的喷氨量比例,并根据所给出的总喷氨量及各层喷氨区的喷氨量比例控制氨总流量调节阀和各分流量调节阀的状态,实现喷氨量的实时控制。
四川大学 2016-10-11
一种片段缩合制备醋酸去氨加压素的方法
醋酸去氨加压素为天然精氨酸加压素的结构类似物,是对天然激 素的化学结构进行两处改动而得。 醋酸去氨加压素具有良好止血效果且不会产生加压的副作用。主 要用来治疗中枢性尿崩症、血友病及治疗性控制出血和手术前预防出 血。效果好且副作用小。在现有的醋酸去氨加压素合成方法中,液相 合成产生较多废液,反应时间长,每偶联一个氨基酸都需要进行纯化, 后处理繁琐,收率低,不利于产业化生产。 固相合成方法中,中国专利 CN
兰州大学 2021-04-14
技术需求:低成本高盐高氨氮有机废水处理
低成本高盐高氨氮有机废水处理;含盐量〈1600mg/L,氨氮〈35mg/L,总氮〈50mg/L;本厂现有污水处理工艺为蒸发脱盐后进入生化UBF+A/O达标排放,寻求专家团队一起合作开发更低成本高效处理高盐高氨氮有机废水技术。
济宁康德瑞化工科技有限公司 2021-09-08
一种高超声速飞行器跳跃滑翔弹道解析求解方法
本发明公开了一种高超声速飞行器跳跃滑翔弹道解析求解方法,将GER坐标系下高超声速飞行器跳跃滑翔弹道解析求解转换为AGI坐标系下高超声速飞行器跳跃滑翔弹道解析的求解,之后再将AGI坐标系下的解析解解算到GER坐标系中,获得了较高精度的高超声速飞行器跳跃滑翔弹道的纵程、横程、速度、高度以及弹道倾角的解析解,为快速弹道规划、弹道预报提供支持。
北京航空航天大学 2021-04-10
首页 上一页 1 2
  • ...
  • 16 17 18
  • ...
  • 88 89 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1