高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
光的彩色偏振实验器
宁波华茂文教股份有限公司 2021-08-23
北京紫外光耐气候箱
产品详细介绍北京雅士林试验设备有限公司资深专业管理团队,全面提升了雅士林的管理水平和对客户的响应速度,完美体现现代化企业管理流程。雅士林品牌紫外老化试验箱技术资料请参阅:紫外老化试验箱适用于非金属材料的耐阳光和人工光源的老化试验。紫外老化试验箱光源采用8只额定功率为40W的紫外荧光灯作发光源。紫外线荧光灯管,分布在机器的两侧,每侧各4只(有UVA-340和UVB-313光源供用户选择配置)。一、参照标准GB/T14522-93《中华人民共和国国家标准--机械工业产品用塑料、涂料、橡胶材料—人工气候加速试验方法》GB/T16585-1996《中华人民共和国国家标准—硫化橡胶人工气候老化(荧光紫外灯)试验方法》及GB/T16422.3-1997《塑料实验室光源暴露试验方法》等相应标准条款设计制造二、紫外老化试验箱规格与技术参数:型号 ZN-P 工作室尺寸D×W×H 450×1170×500mm 外型尺寸D×W×H 780×1400×1500mm温度范围:RT+10℃~70℃湿度范围:≥98%RH温度波动度:±0.5℃控温方式:PID自整定控温方式灯中心距离:70mm样品与灯中心距离:50mm标准试件尺寸:75×300mm辐 照 度:≤0.68W/m2有效辐照区域:900×210mm紫外线波长:UV-A波长范围为315-400nm试验时间:0~9999H  可调紫外光、凝露时间交替可调功    率:4KW三、紫外老化试验箱箱体结构:箱体外壳材料:A3钢板喷塑处理内胆材料:SUS不锈钢板箱盖材料:A3钢板喷塑处理在工作室的两边共安装8支UV-A紫外灯管加热方式为内胆水槽式加热,升温快,温度分布均匀箱盖为双向翻盖式,开闭轻松自如内胆水位自动补水,防止加热管空烧损坏试样架由不锈钢或铝合金制成四、紫外老化试验箱控制系统:智能型奥托尼克斯系列温控仪,控制精度±0.1℃薄膜式 KEY BOARD按键温度控制均采用P·I·D+S·S·R,系统协调控制,可提高控制元件与界面使用之稳定性及寿命触控式设定、数位及直接显示具有P·I·D自动演算之功能,可减少人为设定时带来之不便光照和冷凝可独立控制也可以交替循环控制光照和冷凝的独立控制时间和交替循环控制的时间可在一千小时内任意设置五、紫外老化试验箱使用条件:1、安装场地地面平整,通风良好设备周围无强烈振动设备周围无强电磁场影响设备周围无易燃、易爆、腐蚀性物质和粉尘设备周围留有适当的使用及维护空间,2、供电条件电源要求:AC380V±10%  50±0.5Hz  三相五线制预装功率:总功率+2.0KW要求用户在安装现场为设备配置相应容量的空气或动力开关,并且此开关必须是独立供本设备使用(建议电源开关容量:32A)3、环境条件环境温度:5℃~+30℃(24小时内平均温度≤30℃)环境湿度:≤85%RH4、供水条件(仅限湿热型及需要用水设备)采用纯净水、蒸馏水、去离子水。电阻率≥500Ω.m5、其它注意事项试验过程中打开试验箱的门,会造成箱内的温、湿度波动;在试验过程中如果多次打开门或长时间敞开门或试验样品散发湿汽,可能会造成制冷系统换热器结冰而无法正常工作紫外老化试验箱售后服务1、安装调试:我司负责免费送货至客户指在地点, 并派专业技术人员免费安装调试,培训2~5名操作员到会操作为止。2、阳光售后服务承诺:公司产品均保修一年,终身维护。若产品出现问题,在接到报修电话15分钟响应,48小时内由我司专业维修人员上门处理。紫外老化试验箱产品咨询联系方式:公司名称:北京雅士林试验设备有限公司地址:北京市大兴经济开发区金辅路2号(102600)电话号码:010-68176855  68178477  68178583 (总机)          010-68173596  88264566  68217855 (直线)  传真号码:010-68174779联系人(紫外老化试验箱产品销售专员):何正雄13522520906 刘  伟13522520626许志茹13521998843崔苗苗15011138949更多详细产品信息请浏览北京雅士林官方网站:http://www.bjyashilin.com北京雅士林试验设备有限公司由多名具有国际知名环试企业工作经历的海归博士组建,技术创新和新产品开发源于客户需求及密切关注行业发展的最新动态,并与中国科学院、中国航天、清华大学、北京大学等科研机构紧密合作.北京雅士林试验设备有限公司是环境与可靠性试验设备的专业制造厂商,具有丰富的环试行业经验,拥有先进的设计、制造、销售管理平台及完善的售后服务体系,是中国环境试验设备领域的知名企业之一。典型客户群:中国科学院,中国航天系统,北京大学,清华大学,ABB,现代汽车,摩托罗托,中国计量院、武警装备研究院、公安部第一研究所等
北京雅士林试验设备有限公司 2021-08-23
UV-A系列紫外光灯管
产品详细介绍紫外灯管UV-A313 荧光紫外灯光源,是模拟自然阳光中的紫外光辐射。 ⒈荧光紫外灯管功率:40W ⒉荧光紫外灯管长度:1120㎜ ⒊荧光紫外灯管辐照度范围:≤50w/m2 ⒋荧光紫外紫外波长:290nm~400nm ①UV-A 340灯管的发光光谱能量主要集中在340nm的波长处 ②UV-B313灯管的发光光谱能量主要集中在313nm的波长处 ⒌①荧光紫外灯:发射400nm以下紫外光的能量至少占总输出光能80﹪的荧光灯。 ②Ⅰ型荧光紫外灯:发射300nm以上的光能低于总输出光能2﹪的一种荧光紫外灯。通常称为UV-A灯。(UV-A313、UV-A340、UV-A351、UV-A355、UV-A365) ③Ⅱ型荧光紫外灯:发射300nm以下的光能大于总输出光能10﹪的一种荧光紫外灯。通常称为UV-B灯。 ⒍①大多数试验场合推荐采用Ⅰ型灯,它是模拟夏天中午日光照射后的情况。这种灯在340nm处有一个发射峰。 ②另一种常用的Ⅰ型灯在351nm处有发射峰,多数用于模拟日光透过窗玻璃后的情况。 ⒎国产灯管的有效使用寿命在500小时左右(进口灯管寿命1600~1800小时) 灯管规格: (国产型)灯管长度:1120㎜ 直径:26mm (进口型)灯管长度:1120㎜ 直径:38mm
北京鸿达天矩试验设备有限公司 2021-08-23
小学科学资源箱光现象
光现象资源箱 型号:QWG1208   实验清单: 光在空气中直线传播实验 面镜成像观察实验         透镜成像观察实验 影子观察实验
青华科教仪器有限公司 2021-08-23
光的传播、反射、折射实验器
宁波浪力仪器有限公司(余姚市朗海科教仪器厂) 2021-08-23
中心体调控大脑皮层发育机制研究
放射状胶质细胞是大脑发育最为关键的一种神经前体细胞,分裂产生大脑皮层几乎所有的神经元和胶质细胞。所有动物细胞都有中心体,通常位于细胞核附近的细胞质中。然而中心体在放射状胶质细胞内的定位十分独特,位于远离细胞核的顶端细胞膜上,即脑室腔的表面上。这种独特的亚细胞特征已被发现数十年,但其成因及功能一直令人困惑。图1. 中心体的顶端膜锚定调控神经前体细胞机械特性和大脑皮层的大小及折叠时松海教授和史航研究员课题组采用基于透射电镜成像的连续超薄切片技术,首次观察到了放射状胶质细胞内的中心体是通过附着在母体中心粒上的远端附属物(distal appendages)锚定在顶端细胞膜上的(图1)。为了探索其分子调控机制和生理功能,研究人员在大脑皮层放射状胶质细胞内特异性地去除了远端附属物的重要构成蛋白CEP83,使得远端附属物无法形成,从而阻止中心体与细胞膜的连接。结果发现,去除CEP83蛋白后,母体中心粒上不再形成远端附属物,中心体和顶端膜发生了微小的错位,不再锚定在顶端膜上。进一步研究表明,中心体这一不足1微米的位移,不是通过影响初级纤毛的形成,而是破坏了顶端膜上特有的环状微管结构,导致顶端膜被拉伸、变硬。这一物理特性的改变引起了放射状胶质细胞内机械敏感信号通路相关的YAP蛋白(Yes-associated protein)的过度激活,从而导致了放射状胶质细胞前期的过度扩增以及之后中间前体细胞的增多,最终使得大脑皮层神经细胞显著增加,体积扩大,并引发异常折叠。论文链接:https://www.nature.com/articles/s41586-020-2139-6
清华大学 2021-04-10
一种基于物联网的房间调控系统
成果描述:本实用新型公开了一种基于物联网的房间调控系统,其包括依次连接的传感器模组、处理系统和受控端,以及与处理系统相连接的移动终端;处理系统包括依次连接的输入电路、处理电路和输出电路,以及与处理电路相连接的存储器、无线通信模块和电源模块,电源模块连接无线通信模块。本实用新型可以通过移动终端远程控制作为受控端的家用电器,也可以通过传感器模组自动控制受控端,提前改善房间内的环境,为用户提供更好的居住体验。市场前景分析:本实用新型可以通过移动终端远程控制作为受控端的家用电器,也可以通过传感器模组自动控制受控端,提前改善房间内的环境,为用户提供更好的居住体验。与同类成果相比的优势分析:国内领先
成都大学 2021-04-10
常温下对谷极化发光的高效调控
过渡金属硫化物(TMDCs)具有独特的谷自旋自由度可用于信息和传感等领域,是研发谷电子学微纳光电器件的重要材料。近年来,利用金属微纳结构(纳米线、纳米光栅、超表面等)调控TMDCs材料的谷偏振发射特性,实现了左旋/右旋光的空间方向选择性传播。然而,这些表面波导型微纳结构往往尺寸较大(>1μm2),难以满足微型化和高度集成的器件设计需求。基于自上而下制备的纳米结构对比湿法生长的,通常其表面粗糙度大且品质因子低,因而要求在低温度环境下才能展现调制效果。获得常温下高效调控TMDCs谷偏振发射特性的微纳结构器件成为当前备受关注的研究热点之一。近期工作中,北京大学极端光学团队利用扫描探针操控组装纳米颗粒,形成复合杂化纳米结构体,先后实现了调控纳米颗粒散射光和荧光,达到单向性发射 [Laser & Photon. Rev. 9, 530(2015);10, 647 (2016)]。在最新的工作中,课题组将探针微纳操控方法引入到手性特征微纳结构体系研究中,实现超小型手性光学天线高效调制谷极化发光特性。 实验上,研究团队利用扫描探针显微镜的针尖操控金纳米棒,组装制备出一种具有手征特性的立体空间V型天线(~0.02μm2)【图1(A)】。其中,将单层二硫化钼夹在天线中间,在纳米棒交叠区形成局域表面等离激元热点区,可显著增强光与物质相互作用,荧光强度增强约3个量级。单层二硫化钼在天线近场耦合和远场干涉等作用下,其远场辐射方向从各向同性被调制成单向性发射【图1(B)】;同时,由于天线的手性耦合特性使得TMDCs的荧光谷偏振度从18%提高到47%【图1(C)】。模拟计算表明,天线对于谷荧光的偏振度调控,由Purcell效应、局域模式耦合以及远场干涉效应共同决定。研究人员还利用探针操控的灵活性,通过原位改变两个金纳米棒的夹角和相对位置,获得具有左旋、右旋手征特性强弱不同的系列V型天线。实验测量结果均与模拟计算的预期相一致,有力地支持了该手性天线调控性能的有效性和高效性,这为开发谷光电子微纳器件奠定了基础。此外,研究人员还发现手性光学天线的量子效率依赖于量子发射体的手性,该发现为手性结构调控辐射场的相关研究新方向提供了可能性。
北京大学 2021-04-11
揭示环状RNA新功能—circRNA调控蛋白翻译过程
环状RNA(circular RNA, circRNA)circMYBL2通过招募RNA结合蛋白PTBP1调控癌基因FLT3 mRNA的翻译效率,从而促进了FLT3-ITD突变型白血的发生发展。该项研究成果首次报道新型非编码RNA circRNA以RNA-蛋白复合体形式发挥对翻译进程的正调控作用,揭示了环状RNA的新功能。  FLT3-ITD是在FLT3基因中间的一段串联重复序列突变,该突变可导致Y591等位点的自磷酸化,进而激发下游通路的过度激活,促进疾病进程。目前普遍认为FLT3-ITD突变型白血病预后极差且容易复发,因此,寻找新的 FLT3-ITD 白血病的药物靶点具有重要意义。该团队以FLT3-ITD突变型白血病为研究模型,深入研究circRNA潜在作用机制及其对该类白血病疾病进程的调控作用。研究发现,环状RNA circMYBL2在FLT3-ITD阳性白血病中高表达并特异性影响FLT3-ITD阳性白血病细胞的增殖、凋亡等一系列细胞功能,却对FLT3-ITD阴性白血病细胞无显著影响。 进一步研究显示,circMYBL2调控该疾病关键癌基因FLT3的蛋白翻译过程;揭示了circMYBL2与RNA结合蛋白PTBP1形成复合体促进了FLT3蛋白的翻译效率(如上图)。该工作报道了circRNA调控翻译的新功能。
中山大学 2021-04-13
Hippo信号通路对超级增强子的调控
 研究发现,Hippo信号通路的效应因子YAP能协同多能干细胞的核心转录因子Nanog,Sox2 和Oct4及其他超级增强子结合蛋白共同作用超级增强子,参与调控多能干细胞的关键基因表达。当Hippo信号通路的核心因子Mst1和Mst2敲除后,YAP在核内富集增加,其在基因组上也形成大量新的富集位点。更重要的是,在YAP富集增加的位点上,Nanog,Sox2 和Oct4的富集也相应增高,从而导致一些传统增强子转变为超级增强子而使其调控的基因表达大增。数据显示一些典型的促进神经细胞分化基因和抑制中内胚层分化基因的表达水平出现了基于超级增强子调控机制的剧烈变化,这也解释了为什么Mst1和Mst2 敲除多能干细胞出现倾向性分化。同时,研究也发现Mst1和Mst2敲除的多能干细胞中新形成的YAP-Nono-Tbx3调控轴会导致多能干细胞向中内胚层细胞的早期分化受抑制。这项研究工作深入揭示了Hippo-YAP信号通路在多能干细胞分化过程中的关键作用机制,将有助于指导多能干细胞向不同胚层细胞的分化,对于多能干细胞的临床应用有重要意义。
中山大学 2021-04-13
首页 上一页 1 2
  • ...
  • 26 27 28
  • ...
  • 92 93 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1