高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
改良分段进水工艺及优化调控关键技术
北京工业大学 2021-04-14
狄拉克半金属超导电性调控
随着拓扑绝缘体、拓扑半金属等拓扑材料的发展,寻找和理解新的拓扑物态也激发了广泛的关注和研究。近些年,随着拓扑分类技术的不断发展和人们对拓扑物态的深入研究,高阶拓扑绝缘体、高阶拓扑半金属的概念随之诞生。高阶拓扑物态的“高阶”体现在体-边对应关系上。对于传统的d维拓扑绝缘体,其体态是有能隙的绝缘体,而在(d-1)维的边界上会出现无能隙的受拓扑保护的边界态,如三维拓扑绝缘体具有二维的狄拉克表面态,二维拓扑绝缘体具有一维
南方科技大学 2021-04-14
有机气敏薄膜生长调控与敏感机理研究
本项目属复合材料与传感器研究领域。主要针对气体传感器特异性响应与识别机理、气体信息与电信号转换机制以及薄膜表面/界面效应等基础科学问题开展了深入研究,提出并发展了有机纳米复合气敏材料新领域,为有机/无机纳米薄膜组装与结构调控提供了新途径,同时建立了传感器微观响应模型,对发展新型复合薄膜气体传感器具有重要的科学意义。发表SCI论文71篇,SCI他引905次,均为正面引用,研究成果受到敏感材料与传感器领域研究者的广泛关注与认可。本项目申请国家发明专利49项,授权29项,研制出了灵敏度高、响应快(<
电子科技大学 2021-04-14
纳/微结构非线性光学、光调控与器件应用
本项目主要开展纳微结构体系光子带隙的设计、纳微结构体系的光学非线性效应、光波传播动力学以及光控光操作应用等方面的研究,发展在介观尺度下调控光子传输行为的新效应、新原理与新技术。已在Physical Review Letters、Optics Letters、Applied Physics Letters和Optics Express等国内外重要学术刊物上发表论文30余篇。其中有关铁锆双掺铌酸锂晶体的相关成果被《Science Archived》收录,有关非传统偏压配置条件下各种非线性光子学晶格的制备
南开大学 2021-04-14
nox 基因对单增李斯特菌毒力调控
致病菌入侵宿主细胞是一个由多基因控制、受环境和宿主影响的系统过程,nox 基因是病原细菌中广泛存在,但国际上对该基因在细菌入侵过程的功能尚不清晰,通过构建单增李斯特菌敲除、过表达菌株的构建,我们发现 nox 基因的缺失促进了单增李斯特菌的入侵!这一结果在细胞和动物实验中均得到了验证,虽然其具体机理尚不清晰,但此发现对于后期研究 nox 基因在单增李斯特菌毒力基因及其调控网络方面,将获得重要突破。 
上海理工大学 2021-01-12
纳秒脉冲电场调控干细胞和促进分化技术
随着社会老龄化以及人民生活水平的提高,以干细胞为核心的再生医学发挥着越来越重要的作用。关节软骨损伤及其退行性病变-骨关节炎给社会带来越来越大的劳动力损失以及患者生活质量的下降。本项目利用纳秒脉冲电场选择性降低DNA甲基化,提升干细胞干性,促进干细胞多向分化。应用范围 本项目可用于诱导多能干细胞(iPS)制备;干细胞分化前准备和成骨、成脂以及成软骨分化;体内骨、软骨再生;骨关节炎的早期干预和对症治疗;细胞治疗;细胞分泌因子调控等领域。 项目阶段 1.纳秒脉冲电场是新兴的、能够精确控制场强和脉宽的电场技术,可以比传统电场更加精准地控制参数,以及提升场强到KV/cm。它有效地穿透细胞膜、作用到细胞器和染色质,发挥广泛的生物学效应。 2.我们发现纳秒脉冲电场的不同参数组合(场强、脉宽、频率、刺激个数、应用时间点等)会引起不同的生物学作用。基于该理念,实验室前期工作发展了使用纳秒脉冲电场:a.选择性DNA去甲基化;b.提升干细胞干性;c.促进干细胞分化(成骨、成脂和成软骨);d.促进处理后的干细胞体内软骨再生的能力;e.提升细胞分泌因子能力;f. 改良传统的“电击杯”(BTX electroporationcuvette #45-0125),开发出能够连续为细胞施加刺激的导电薄膜。
北京大学 2021-04-13
纳秒脉冲电场调控干细胞和促进分化技术
随着社会老龄化以及人民生活水平的提高,以干细胞为核心的再生医学发挥着越来越重要的作用。关节软骨损伤及其退行性病变-骨关节炎给社会带来越来越大的劳动力损失以及患者生活质量的下降。本项目利用纳秒脉冲电场选择性降低DNA甲基化,提升干细胞干性,促进干细胞多向分化。
北京大学 2021-01-12
转录诱导精子形成基因 40(Tisp40) 在治疗血管损伤后再狭窄中的功能和应用
本发明公开了一种转录诱导精子形成基因 40(Tisp40)在治疗血管损伤后再狭窄中的功能和应用。本发明以 Tisp40 基因敲除小鼠和野生型小鼠为实验对象,通过血管损伤模型,进行了小鼠内膜新生、血管壁细胞增殖水平和平滑肌细胞表型转换的检测。结果表明,Tisp40 基因敲除可以明显抑制内膜新生和细胞增殖,抑制平滑肌细胞由收缩型向合成型转换。这表明 Tisp40 在血管损伤后再狭窄中的功能主要体
武汉大学 2021-04-14
多场耦合能质传递强化及调控理论与方法
能源、环境及化工等领域广泛存在具有相变和反应的能质传递和转化问题, 具有多区域、多场、传递与转化等相互耦合的特点,是影响装备性能的关键热物 理问题,对提升性能至关重要。本项目针对上述领域中共性的多场耦合能质传递 机理反其强化和调控方法的前沿科学问题开展研究工作,取得了系列原创性研究 成果。主要发现点有: 一、 分区耦合多相传递可视化实验方法及其机理与特性:创新了滞止流和通 流槽道内逸出速率及位点可控的液滴和气泡动力学行为、变孔隙率网络流道及其 与外部流场耦合的两相流动、毛细阻力可调的多孔层内相变传热及含反应边界的 两相流及传递等可视化实验方法。获得了逸出液滴聚合衰减震荡机理及规律;发 现了微孔逸出气泡脱离后涌入和界面震荡现象;揭示了具有壁面逸出气泡的槽道 内两相流规律;阐明了具有微孔层和结构缺陷的气体扩散层内两相分布特征;厘 清了反向式毛细蒸发器多孔层内相分布规律反其对相变传热的影响机理;揭示了 燃料电池内两相流动和传输以及电化学反应的相互作用规律,获得了流道水淹与 压降之间的定量关系及膜电极表面温度分布特性。 二、 多元多相分区耦合能质传递及转化理论模型:建立了多场耦合固体基质 表面细胞吸附成膜理论模型,揭示了生物膜结构与能质传递及产氢/产电性能的 相互关系;建立了含生化反应的多孔填料床内多相能质传递的毛细管模型和多相 混合模型,阐明了流动和传输与生化反应的耦合特性,为固定化细胞生物反应器 性能预测提供了方法;建立了毛细结构材料内分区耦合相变传热理论模型,为反 向式毛细蒸发器和微槽膜状凝结换热提供了理论计算方法;提出燃料电池两相传 输三维孔隙网络模型和气体有效扩散系数的分形模型,首次利用V0F方法模拟 了边壁具有逸出液滴的燃料电池流道内细观两相流行为,揭示了多孔扩散层与流 场板流道内两相流的耦合关系以及流道结构和工况参数对两相流特性的影响规 律。 三、多场耦合能质传递强化及调控方法:基于分区耦合强化传热思想,提出 了三维肋表面和螺旋扭带组合强化传热新方法;通过分区流动和传递强化与调控, 发展了三维柱状阵列结构阳极微流体燃料电池,显著提升了电池性能;利用石墨 烯表面修饰,实现了多孔电极内微生物产电菌电子转移速率和活性生物量调控和 强化;创新性利用流场/浓度场/温度场/光场的强化和调控,结合表面修饰和弥 散光导体技术,实现微生物生化转化全过程强化;提出了通过外接电阻控制阳极 电势诱导和调控生物膜结构,强化了质子传输,大幅提升了微生物燃料电池性能。
重庆大学 2021-04-11
报道驱动肿瘤发生的表观遗传调控新机制
癌基因cMyc是一个重要的转录因子,调控约15%的人类基因表达,在肿瘤细胞的增殖、凋亡以及代谢重编程等方面发挥重要作用。然而,目前尚不清楚,cMyc是否通过转录以外的机制,来广泛地调控基因的表达以及肿瘤的发生发展。中国科学技术大学的张华凤课题组、高平课题组联合军事医学科学院段小涛课题组的研究发现,cMyc能够促使琥珀酸脱氢复合酶(SDH complex)中的重要亚基SDHA乙酰化以及SDH复合酶失活,导致底物琥珀酸(succinate)的积累,进而上调组蛋白H3K4的三甲基化(H3K4Me3)水平以及基因的表达。该研究成果在线发表于Nature Metabolism期刊上。机制方面,发现cMyc通过泛素连接酶SKP2促进线粒体中SIRT3的蛋白降解,从而导致SDHA的乙酰化上升。通过质谱进一步鉴定出SDHA受调控的乙酰化位点K335,小鼠实验显示SDHA的K335位点乙酰化在cMyc诱导肿瘤过程中起重要作用。进一步分析临床病人弥散性大B细胞瘤(DLBCL)样本发现,高表达cMyc的DLBCLs中,SIRT3发挥着抑癌因子的功能,而K335位乙酰化的SDHA发挥着促进肿瘤的作用。这一发现揭示了cMyc驱动的肿瘤发生过程中SDHA乙酰化修饰发挥的重要病理学作用。SDHA被认为是抑癌蛋白,它的失活突变体与多种肿瘤,例如副神经结瘤、乳腺癌、肾癌等,有一定程度的联系。这项研究表明,至少在弥散性大B细胞淋巴瘤中,SDHA通过乙酰化失活而极大地促进了cMyc异常表达的肿瘤的进展。因此,靶向SDHA的乙酰化将可能为此类肿瘤的临床治疗提供潜在的策略和手段。论文链接:https://www.nature.com/articles/s42255-020-0179-8详细阅读:http://news.ustc.edu.cn/2020/0317/c15884a414798/page.htm
中国科学技术大学 2021-04-10
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 24 25 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1