高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
强激光驱动电容器靶产生百太瓦孤立阿秒脉冲的新方案
超快光子束流可通过对组成物质的原子、分子和电子等微观粒子进行超高时空分辨率的测量和控制,实现对物质相关的物理、化学和生物医学等宏观过程的理解、应用和控制。时间尺度在10-18秒的阿秒光子束流,能够对电子进行实时探测和控制,为人类认识微观世界提供了全新手段,被认为是激光科学史上最重要的里程碑之一。世界先进国家都将阿秒科学列为未来10年激光科学最重要的发展方向。欧盟极端光学装置ELI(Extreme Light Infrastructure)项目三大装置之一,位于匈牙利的阿秒光脉冲源 (ELI-ALPS)研究中心的首要任务就是为国际科学界用户提供涵盖相干极紫外(XUV)、X 射线和阿秒脉冲的超快光子束流。 利用强激光与物质相互作用产生高次谐波是突破飞秒极限实现高亮度阿秒脉冲辐射的重要方案之一。在强激光与固体密度等离子体的相互作用中,由于两者之间的能量耦合效率较低,谐波辐射以低效率的相对论振荡镜(Relativistic Oscillating Mirror, ROM)机制为主,难以产生高能的孤立纳米电子层进行更高效率的相干同步辐射(Coherent Synchrotron Emission, CSE)。
北京大学 2021-04-11
一种离子风驱动的可同步处理多种污染物的空气净化器
本实用新型公开了一种离子风驱动的可同步处理多种污染物的空气净化器,包括物理过滤装置、低温等离子体产生装置和离子风动力装置,低温等离子体产生装置分为离子泵荷电加速区、电凝并区、电除尘氧化区和反电晕催化区;物理过滤装置采用导体网、粗效过滤网、高效过滤网和活性炭过滤网物理过滤,本实用新型采用离子泵荷电加速区、电凝并装置、电除尘氧化装置和反电晕催化区四处进行低温等离子体放电同时针对细颗粒物PM2.5、微生物气溶胶及VOCs、CO、NH3等毒害气态污染物进行一体化净化,能够高效捕集细颗粒物PM2.5,灭活微生物气溶胶,同时深度氧化处理VOCs、CO、NH3等毒害气态污染物,是一种集铺集氧化于一体的多污染物复合净化技术,提高室内空气净化效果。
浙江大学 2021-04-13
一种基于伺服驱动加载的三维力传感器动态响应标定装置
本实用新型公开了一种基于伺服驱动加载的三维力传感器动态响应标定装置,包括标定装置工作台、传感器固定盘、传感器加载件、伺服加载系统和加载装置固定平台。所述装置工作台由顶板、立柱和底板组成,立柱底部设有调平器,顶板上部设有水平仪、下方安装传感器固定盘;三维力传感器的顶部和底部均具有螺孔,用于连接传感器固定盘和传感器加载件;标定装置工作台的X、Y、Z方向各具有一套伺服加载系统,分别安装在加载装置固定平台和工作台底板上;伺服加载系统包括伺服电机、减速器、联轴器、丝杆、轴力计和加载头。本实用新型装置适用于不同量程的力传感器,精度高,实现荷载的连续动态加载测量,使用效果好,便于推广使用。
浙江大学 2021-04-13
一种双螺旋弹簧组合式的移动机器人悬架减震器
简介:本发明提供一种双螺旋弹簧组合式的移动机器人悬架减震器,属于减震技术领域,主要用于移动机器人的悬架与轮腿机构间的减震。该减震器包括安装支架、减震器壳体、连接套、连接轴、上螺旋弹簧、下螺旋弹簧以及轮腿支架。其减震分为两个阶段:第一阶段为垂直向上减震过程,来自轮腿支架的振动能量使得连接套上移并压缩上螺旋弹簧,借助弹簧阻尼作用减小振幅,同时下螺旋弹簧被拉伸;第二阶段为垂直向下减震过程,在上螺旋弹簧和下螺旋弹簧的弹力作用下,连接套下移使得下螺旋弹簧被压缩,借助弹簧阻尼作用减小振幅,同时上螺旋弹簧被拉伸;该减震器能够缓冲并衰减来自轮腿支架的振动能量,从而避免把较大的振动能量通过安装支架传递给移动机器人的悬架。
安徽工业大学 2021-04-11
适用于室内外环境的大部件高精度装配自动对接移动机器人
本项目创新研发了适用于室内外环境的大部件高精度装配自动对接移动机器人,相较于传统的装配对接系统,具有承载能力大,对接精度、效率高,系统运行稳定、可重构性好等特点,可完全替代传统由人力完成大部件装配对接过程。可广泛应用于火箭舱段装配生产、飞机武器挂载等场合,对于促进航空航天工业的发展具有重要作用。 技术特征 (1)自动对接机构采用视觉伺服技术,将双目相机、激光位移传感器和力传感器等多传感器数据融合,以六自由度并联机构作为运动执行机构,实现大部件高精度自动对接,负载达到1-50T,满载移动速度≤6m/min,满载额定滚转速度≤10°/min,调姿最小分辨率达到0.01mm; (2)运行稳定性好、环境适应能力强。移动机器人采用卫星导航与惯性导航的组合导航技术,使用4G信号进行网络差分定位,可以达到厘米级定位精度。
南京航空航天大学 2021-05-11
三相永磁同步电动机相序检测和转子初始位置定位系统及方法
本发明公开了一种三相永磁同步电动机相序检测和转子初始位置定位系统及方法,该系统包括永磁同步电动机,控制器,逆变器和位置传感器,逆变器对应永磁同步电动机的连接相序为abc或acb,控制器基于电压矢量控制技术控制转子的转动并先后给定该定子两个固定相位的电压矢量以驱动该转子先后转至对应的位置,通过位置传感器获得转子转至的两个绝对位置角度,由控制器计算该两个绝对位置角度差来判断永磁同步电动机的连接相序,及通过给定的电压矢量设定该转子的初始位置角,并将初始位置角和电机相序信息存入eeprom.控制器在每次上电时,可以选择从eeprom或者调用检测初始角和相序子函数获得初始位置角和相序信息,该系统简单,检测方法简单可靠,准确.
华侨大学 2021-04-29
适用于室内外环境的大部件高精度装配自动对接移动机器人
本项目创新研发了适用于室内外环境的大部件高精度装配自动对接移动机器人,相较于传统的装配对接系统,具有承载能力大,对接精度、效率高,系统运行稳定、可重构性好等特点,可完全替代传统由人力完成大部件装配对接过程。可广泛应用于火箭舱段装配生产、飞机武器挂载等场合,对于促进航空航天工业的发展具有重要作用。技术特征(1)自动对接机构采用视觉伺服技术,将双目相机、激光位移传感器和力传感器等多传感器数据融合,以六自由度并联机构作为运动执行机构,实现大部件高精度自动对接,负载达到1-50T,满载移动速度≤6m/min,满载额定滚转速度≤10°/min,调姿最小分辨率达到0.01mm;(2)运行稳定性好、环境适应能力强。移动机器人采用卫星导航与惯性导航的组合导航技术,使用4G信号进行网络差分定位,可以达到厘米级定位精度。应用范围:大部件高精度装配自动对接移动机器人不仅应用于航空航天领域的飞机装配大部件自动装配对接、战机武器辅助挂载、火箭和航天器舱段自动装配对接等,还可广泛应用于工程机械、能源、海工装备、轨道交通等领域大型型设备总装、焊接等作业环境。对提升大型部件装配的效率,节省装配时间,节约装备生产成本,具有较高的战略价值及经济前景。项目负责人简介:楼佩煌教授,长期从事现代集成制造技术、柔性制造技术,智能装备技术,物流自动化装备技术,工业机器人技术等研究与开发工作。作为项目负责人和主要研究人员先后完成了国家“862”高科技计划项目、国家自然基金项目、部省联合重大科技攻关项目、国防预研项目30多项。图1 大部件高精度装配自动对接移动机器人样机
南京航空航天大学 2021-04-10
一种物理模拟航空发动机中介机匣件铸造成形过程的模具
本发明公开了一种物理模拟航空发动机中介机匣件铸造成形过 程的模具,其包括模具单元、固定单元和照明单元,模具单元由多层 模腔结构叠加而成,每层模腔结构的内部腔体连通,多层模腔结构内 部腔体组合而成的腔体形状与航空发动机中介机匣件的形状适应;模 具单元中部设有与底层模腔结构相连通的中心直浇道;底层模腔结构 的底部设有排水阀和支撑定位柱;固定单元包括组合销孔和圆柱销, 组合销孔由各层模腔结构上同轴销孔叠加而成,圆柱销贯穿组
华中科技大学 2021-04-14
一种高精度的航空发动机叶片自动三维测量方法和系统
本发明公开了一种高精度的航空发动机叶片自动三维测量方法, 包括以下步骤:1)配准:将设计模型所处的设计坐标系与工件实体所 处的测量坐标系进行配准;2)路径规划:通过数据处理装置规划距离 传感器在测量过程中的运动路径,以使工件实体上的被测区域一直处 于距离传感器的测量范围内;3)自动测量:距离传感器对工件实体的 正面区域和反面区域进行采样,得到工件实体的完整表面轮廓。本发 明使用距离传感器作为测量终端,可以获得被测区域
华中科技大学 2021-04-14
一种太阳能驱动的基于纳米复合光热膜的海水淡化 / 废水净化装置
太阳能驱动的界面蒸发是一种绿色环保、可再生、有前途的用于海水淡化和废水净化的新方法,可以长期且有效的解决淡水资源短缺的问题。本科技创新成果为一种太阳能驱动的基于纳米复合光热膜的海水淡化 / 废水净化装置。通过调整纳米复合光热膜的相比例等因素,实现光热膜的选择与渗透率的平衡。纳米复合有利于形成多层微孔结构,促使光在膜内部发生多次内反射,并可以为蒸发提供足够的水输运通道。纳米复合光热膜具有协同效应,既可以实现高的水蒸发速率和蒸发率,又对有机染料、盐离子以及重金属离子等具有高的去除率。
西安电子科技大学 2023-05-04
首页 上一页 1 2
  • ...
  • 60 61 62 63 64 65 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1