高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
槽式光热发电多模型预测函数控制及其优化
针对太阳能集热系统扰动多、大滞后和大惯性等控制难点,建立了适合控制器设计的简化分段非线性模型,并设计了基于预测函数控制策略的集热系统出口导热油温度控制系统。该预测函数控制策略在调节速度、超调量以及稳定性方面的控制效果均明显优于传统PID控制策略;与未简化的多模型预测控制相比,简化后的多模型预测函数控制的最大动态偏差增大了13%,但计算量大大降低,控制器的实时性也得到增强。
南京工程学院 2021-01-12
基于大数据分析的小基站开关控制方法
本发明公开了一种基于大数据分析的小基站开关控制方法,包括:采集场景信息步骤;数据预处理步骤;提取特征步骤;选择并训练模型步骤;预测步骤。本发明利用特殊场景下时刻表以及小基站接入人数的历史记录,建立数学模型,预测未来小基站内的待服务人数,根据待服务人数去控制小基站的开关,达到节能、减少基站间干扰的目的。 在建立数学模型的过程中,本方法结合数据挖掘和机器学习,提高了预测的准确率和系统的实用性。
东南大学 2021-04-11
一种面向智能家居的电子控制系统
本发明公开了一种面向智能家居的电子控制系统,具体涉及智能设备联合控制领域,包括:通过故障设备识别模块对设备功率状态进行异常标记并建立故障设备清单;功率缺损计算模块提取设备功能属性参数,计算功率差并构建功率缺损矩阵;功能缺损评估模块基于拟合曲线生成功率缺损与功能缺损度的映射关系;代偿设备识别模块通过功能特征匹配与空间衰减调整识别可用代偿设备;代偿策略构建模块基于多目标优化模型进行功率指标分配与功能代偿策略生成;控制指令下发模块将控制指令集发送至代偿设备进行功率调控;实现智能家居系统的功能补偿与优化,解决了设备缺乏自适应代偿能力的问题,提升了智能家居设备的智能化程度。
兰州大学 2021-01-12
脑-脾神经环路控制抗体免疫应答的新机制
2020年4月29日,《自然》杂志在线发表了清华大学医学院、免疫学研究所祁海课题组、上海科技大学胡霁课题组、清华大学麦戈文脑科学研究所钟毅课题组的合作论文,题目是“受行为影响的脑活动调控体液免疫应答”(Brain control of humoral immune responses amenable to behavioural modulation)。通过小鼠模型,该研究发现了一条从大脑杏仁核和室旁核CRH神经元到脾内的神经通路——这条通路促进疫苗接种引起的抗体免疫应答,并可通过响应躯体行为刺激对免疫应答进行不同调控。据作者介绍,这是迄今发现的第一条解剖学明确、由神经信号传递而非内分泌激素介导的、中枢神经对适应性免疫应答进行调控的通路,它的发现为神经免疫学研究拓展出了一个新方向。 “勤動”与增强免疫的中枢神经核团与环路 首先,研究者开发了一种新型去除小鼠脾神经的手术,发现这种小鼠在疫苗接种后所能产生的浆细胞(抗体分泌细胞)数量有明显缺陷,暗示了脾神经冲动信号对B细胞应答有促进作用。通过药理学、遗传学实验,他们继而发现B细胞表达乙酰胆碱9受体对脾神经的这个促进作用不可或缺。通过体内细胞剔除实验,研究者发现在肾上腺素能的脾神经和需要感知乙酰胆碱的B细胞之间,最可能起到了“换元”作用的,是新近发现的可感受去甲肾上腺素而分泌乙酰胆碱的T细胞。 进一步,作者通过伪狂犬病毒逆行追踪,发现脾神经与室旁核(PVN)、中央杏仁核(CeA)有连接。这两个区域的功能与应激、恐惧反应紧密相关,而两处共有的一类神经元是表达CRH(促肾上腺皮质激素释放激素)的神经元。CRH神经元是掌控垂体-肾上腺轴的上游神经元,其激活可导致肾上腺大量释放糖皮质激素,调整机体应激,抑制免疫系统活动。这个已知抑制免疫的内分泌功能,不能解释作者看到的免疫增强的现象。但会不会CRH神经元还可以直接操控脾神经,通过神经通路传导免疫增强的信号来促进浆细胞的产生呢? 为检验这一假说,研究者通过光遗传学实验,发现刺激CeA/PVN的CRH神经元后几秒钟之内就会记录到脾神经的电信号明显加强,证明CeA/PVN与脾间的确有通路连接(图1)。进而,作者通过CRH神经元剔除、DREADD化学遗传学抑制及激活的方法,证明 CeA/PVN CRH神经元活性对应调控了脾内B细胞应答产生浆细胞的过程。 图1 光遗传学实验证明CeA/PVN CRH 神经元与脾神经的连接 自主神经活动可以受外界环境及行为的影响。那么,有没有行为可以刺激这条脑-脾神经轴从而增强免疫应答呢?作者通过监测小鼠在不同行为范式下 CeA/PVN 的 CRH 神经元活动发现,一个他们新开发的“孤立高台站立”(elevated platform standing,如图2和视频)行为可以同时激活这两个核团的CRH神经元。 自主神经活动可以受外界环境及行为的影响。那么,有没有行为可以刺激这条脑-脾神经轴从而增强免疫应答呢?作者通过监测小鼠在不同行为范式下 CeA/PVN 的 CRH 神经元活动发现,一个他们新开发的“孤立高台站立”(elevated platform standing,如图2)行为可以同时激活这两个核团的CRH神经元。 图2 孤立高台站立模式图 更重要的是,抗原接种后第二周里,每天经历这个行为范式两次,小鼠抗原特异的抗体就可以增加约70%。这种行为增强抗体应答的效果,依赖于CRH神经元、依赖于脾神经、并且需要B细胞表达的乙酰胆碱受体。虽然高台站立可以看作是一种应激范式,但并非所有导致应激状态的行为都能增强免疫。作者测试了神经生物学研究中常用的捆绑模型,发现这一范式更强烈而持久激活PVN的CRH神经元,但抑制 CeA 的 CRH 神经元,致使机体持续产生高水平的糖皮质激素,对免疫应答产生了抑制作用。 至此,研究者在这项研究里鉴定、证明了一条对适应性免疫具有增强功能的脑-脾神经轴,揭示了CRH神经元的双重免疫调节功能——经典已知的垂体-肾上腺神经内分泌免疫抑制作用和新发现的经神经环路直接作用于脾的免疫增强作用。 神经免疫学方兴未艾,目前的主要方向包括:以CNS和外周神经为靶器官,研究组织固有的小胶质细胞和招募而至的免疫细胞在系统稳态与病变中的作用;研究中枢及外周神经与淋巴器官和屏障组织(肠上皮等)里固有免疫细胞(巨噬细胞、ILC等)的信号交互与功能互调等。刚刚发表的这一新工作,使研究者认识到淋巴细胞介导的适应性免疫应答也可以受到中枢-外周神经环路的直接调控,以及通过躯体行为正向调节免疫应答的一个生物学基础。 针对最后一点,祁海特别指出,锻炼身体(躯体运动)可以增强“免疫力”,这个几乎所有人或多或少都接受的常识性结论,其背后的科学依据其实远不清楚。他认为,他们发现的脑-脾轴可能为此提供了一个环路方面的解释。我们适度锻炼,可能如同小鼠的EPS,恰到好处地刺激了CeA和PVN的CRH神经元,增进了浆细胞和抗感染抗体的生成。相反,频繁马拉松跑后人们易于感冒,可能是过度应激导致的免疫抑制超越了免疫增强效果。祁海猜测,未来通过神经免疫学的进一步研究,应该可能在特定神经元、神经环路水平定量描述、评价不同锻炼方式、不同躯体运动形式、乃至不同“冥想”“禅修”过程对免疫系统的影响,从而帮助我们为加强“免疫力”而正确选择锻炼或其他增进健康的方式提供更明确的科学依据。这也是题图“勤動”所表达的愿景。 清华-北大生命科学联合中心2013级博士生张旭、清华生命学院2016级博士生雷博、上海科技大学2015级博士生袁媛、清华PTN项目2016级博士生张厉为本文的共同第一作者。该得到科技部和国家自然科学基金委科研基金的支持。祁海课题组还得到北京市科委、清华-北大生命科学联合中心、清华大学免疫学研究所、北京生物结构前沿研究中心、北京市慢性病免疫学研究重点实验室的支持。钟毅课题组得到清华麦戈文脑科学研究所的支持。另外,中国科学院武汉数学物理研究所徐福强课题组、清华大学药学院廖学斌课题组、首都医科大学孙文智课题组为本研究的顺利开展和完成作出了重要贡献。 论文链接: https://www.nature.com/articles/s41586-020-2235-7
清华大学 2021-04-11
克令吊电气控制技能实训装置(半实物
产品详细介绍企业信息您只要致电:021-55884001(袁经理)我们可以解答 克令吊电气控制技能实训装置(半实物) 的相关疑问!我们可以帮您推荐符合您要求的 克令吊电气控制技能实训装置,半实物克令吊电气教学设备 相关产品!找不到所需产品?请点击 产品导航页当前产品页面地址:http://www.shfdtw.com/productshow-94-1307-1.htmlTWCB-08A 克令吊电气控制技能实训装置(半实物)      TWCB-08A克令吊电气控制技能实训装置(半实物)由克令吊操纵实训台和船用克令吊半实物模型组成,可完成船舶克令吊的操作、调试、检修等实训内容,可作为船舶类学校的船舶机械装置、船舶水手与机工、船舶电气、船舶轮机、船舶机电、轮机管理等相关专业的实训设备,也可作为船舶电工、船舶轮机员、船舶职工、船员培训机构的培训及考核设备。TWCB-08A 克令吊电气控制技能实训装置(半实物)产品特点1.克令吊操纵实训台主要元器件均采用了船舶真实的元器件,各电气元件安装在操纵实训台的正面,可直观地看到各个器件的动作,主令控制器安装在操纵实训台面上,便于操作,接近实际的克令吊。2.克令吊半实物模型参照实际的克令吊结构设计,包括三速电动机、钢索、吊货勾、吊臂、回转柱等部分,真实、形象,让学生更易理解和掌握。3.实训装置设置了部分典型的线路故障,学生通过线路调试查找故障,然后排除故障,有利于提高学生的检修能力。4.半实物模型上所用电机的电压等级与实际的克令吊完全相同。5.半实物模型能真实体现升降、变幅、回转三种工作过程及高、中、低三种速度的运行状态。6.半实物  克令吊在起重货物过载时,有定时过电流保护。7.半实物模型停止货物电磁抱闸时,能真实再现滑行过程。TWCB-08A 克令吊电气控制技能实训装置(半实物)技术性能1.输入电源:三相四线(或三相五线)~380V±10%  50Hz2.工作环境:温度-10℃~+40℃  相对湿度<85%(25℃) 海拔<4000m3.装置容量:≤1.5kVA4.漏电保护动作电流:≤30mA,漏电保护动作时间:≤0.1sTWCB-08A 克令吊电气控制技能实训装置(半实物)系统基本配备:船舶克令吊操作实训台 1台船舶克令吊半实物模型 1台TWCB-08A 克令吊电气控制技能实训装置(半实物)实训项目:1.熟悉常用低压电器的结构、原理2.熟悉克令吊控制电路原理图3.船用主令控制器的使用4.轮机员升降、变幅、回转货物操作训练5.克令吊的故障分析6.电气控制线路常见故障排除7.轮机员的技能考核
上海天威教学仪器设备有限公司 2021-08-23
“高级智能心肺复苏模拟人(计算机控制)男
产品详细介绍执行标准:美国心脏学会(AHA)2010国际心肺复苏(CPR)&心血管急救(ECC)指南标准 系统主要功能:(该款模拟人在培训时间内可利用现有的资源办公电脑进行软件安装即可进行培训。培训结束后,退出软件光盘即可用于其它日常办公用途。) ■  生命特征模拟:瞳孔及颈动脉的变化。■ 气道开放。■ CPR心肺复苏:根据2010国际心肺复苏指南标准设计,可进行人工呼吸和心外按压,全程中文语音提示。  标准的气道开放,实时操作曲线显示,对正确和错误的操作语言提示,统计数据打印成绩,可选择训练和考 核方式。■ 学员管理:操作统计报告记录及回放,练习及考核。   标准套配置: ■ 高级复苏全身人体模型一具 ■ 豪华手拉推式人体硬塑箱一只 ■ 计算机(用户自配或选配) ■  CPR安装软件一套                                      ■ 复苏操作垫一条; ■ 屏障面膜(50张/盒)一盒 ;                       ■ 可换肺囊装置四套; ■ 可换面皮二只;                                   ■ 2010国际最新操作指南光盘1盘 ■ 现场急救常用技术使用手册 1 本 ■ 使用说明书一本。 ■ 保修卡、合格证;
上海康为医疗科技发展有限公司 2021-08-23
PPC系列数字式精密定位控制器(博实)
产品详细介绍 PPC 系列数字式精密定位控制器采用模块化设计,将压电陶瓷驱动电源、微位移检测模块、控制模块集成为一体,通过驱动模块驱动压电陶瓷,由传感模块对传感器回馈信号进行检测处理,通过以DSP 为核心的主控模块对系统进行精密控制。用于对压电陶瓷致动器及工作台的精密定位控制。主要特点·模块化设计,提供多种模块可由用户自由组合; ·采用 DSP 芯片,内置 PID 算法,可独立完成对压电陶瓷的闭环控制; ·用户可自行修改 PID 参数,以实现最佳控制效果; ·多种控制模式,方便用户灵活应用; ·有标准计算机 EPP 接口,可通过计算机进行高速控制; ·计算机可对多台仪器进行级联控制; ·全部工业级芯片,保证系统高可靠性; ·可靠的电路优化及抗干扰设计,保证了高稳定性及极低的静态纹波; ·采用德国 RITTAL 机箱、 LEMO 连接器,输入输出高可靠性; ·中文液晶显示、薄膜按键,操作简便; ·型号齐全,配置灵活; ·提供上位机控制软件,用户可通过软件完成对压电陶瓷开环、闭环应用; ·提供 EPP 接口驱动程序、动态链接库文件,方便用户自主编程。 控制模式简介·控制器 / 上位机开环控制     用户可通过控制器或上位机将驱动通道及传感通道隔离。利用驱动模块进行工作台控制,利用传感模块测量控制结果。此状态下用户可完成压电陶瓷致动器的开环迟滞、蠕变、温度及机电特性的研究。 ·控制器 / 上位机闭环控制     用户可通过控制器自有的数字 PID 算法,利用上位机或控制器键盘输入期望的目标定位值,完成闭环控制,并输出控制结果到控制器显示或传送到上位机。 ·模拟开环 / 闭环控制     用户可以通过传感模块的模拟输出和驱动模块的模拟输入信号,自行选择控制方法进行模拟开环或闭环控制实验。  
哈尔滨工业大学博实精密测控有限责任公司 2021-08-23
DHII系列智能微差压数显变送控制器
产品详细介绍产品名称:  DHII系列智能微差压数显变送控制器产品型号:  DHIIIP66防尘防水外壳,大液晶显示介质: 空气及非可燃性气体. 封装材质: 铝, 玻璃.精度: ±0.5% at 77°F (25°C) 包括滞后和重复性 (1小时预热之后).稳定性: < ±1% 每年.压力限制: 范围 5": 5 psi; 10": 5 psi; 25": 5 psi; 25": 5 psi; 50": 5 psi; 100": 9 psi.温度限制: 32 ~140°F (0 ~ 60°C).温度补偿: 32~140°F (0~ 60°C).热效应: 0.020%/°F (0.036/°C) from 77°F (25°C).电源: 高电压型 = 100 ~ 240 VAC, 50~400 Hz或132~ 240 VDC. 低电压型 = 24 VDC ±20%.功耗: 低电压型= 24 VDC - 130 mA max. 高电压型= 100~ 240 VAC, 132 ~ 240 VDC - 7VA max. 输出: 4-20 mA DC into 900 ohms max.满零调整: 通过按键菜单.反应时间: 250 ms (dampening set to 1).显示: 4 位 LCD 0.6" 高. LED 指示设定和报警状态.电气连接: 欧洲型可移动端子合. 过程连接: 1/8" NPT内螺纹.封装: NEMA 4X (IP66).安装方向: Mount unit in horizontal plane. 尺寸: 4.73" x 4.73" x 3.43" (120 x 120 x 87.1 mm).重量: 2 lb 10 oz (1.19 kg). 通讯端口: Modbus® RTU, RS485, 9600 Baud. 认证: CE和 UL.开关参数开关类型: 2 SPDT 继电器.接点容量: 8 Amps at 240 VAC 阻性负载.设定: 按键设定. 
深圳市德威达科技有限公司 2021-08-23
交互式多媒体电化教学智能控制系统
产品详细介绍
天津新中环系统集成技术有限公司 2021-08-23
SC-100A pH自动控制加液系统(双泵)
系统简介        pH自动控制加液系统是pH值在线监控或静态控制。测量与自动加酸加碱调整于一体的新型自动化控制设备。        pH精度高,稳定性好。广泛用于高等院校、科研院所实验室、中试车间、工业生产流程特定pH溶液的配置,以及其他生产工艺需求检测、控制、调节pH之场所。 技术参数 1、工作电源:AC220V±10%,50Hz2、控制范围:0~14 pH3、测量精度:±0.05 pH4、分 辨 率:0.01 pH5、泵头速度:0.1~300转/分 无级调速6、转速显示:OLED高清液晶窗口显示7、加液速度:0.12~190ml/min(自来水)8、加液泵头:双泵9、测量电极:pH三复合电极 或玻璃电极10、温度补偿:自动温度补偿(PT1000)11、pH控制器:高精度智能控制器12、pH电极适用温度 :0~80℃13、pH标准液:6.86/4.0014、外形尺寸:480*320*220mm15、环境温度:室温~40℃ 相对湿度:<80%16、整机重量:约14kg 性能特点 ◆ 高精度智能pH控制器,大屏幕液晶即时显示动态pH值与温度值,超出范围报警。◆ 多种控制测量模式:自动、手动、停止,可自由转换,实现一机多用。◆ 单泵实现加酸或加碱,适用于只用一种液体(酸液或碱液)来调节控制PH值。◆ 采用OLED高清液晶窗口,单独显示当前电机转速及工作状态,加液速率可无级调速。◆ pH值上下限自由设定,设定值与实测值同时显示。◆ pH电极可单点或两点校正,pH值与温度自动测量,pH值能根据温度自动校正。◆ 采用步进电机控制蠕动泵加液,液体接触进口泵管,不接触泵体,无污染。◆ 选配不同形式的pH精密复合电极,及配四氟材质的电极护套和延长杆可在高温、反应釜、反应器中适用实现特殊容器内pH值的监控与调整。◆ 本产品荣获国家发明专利,专利号为:ZL 201420406055.8 ZL 201420406067.0 ZL 201410349779.8 网址链接 http://www.csscyq.com.proshow.asp?id=779
长沙思辰仪器科技有限公司 2021-12-18
首页 上一页 1 2
  • ...
  • 95 96 97
  • ...
  • 788 789 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1