高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚醚醚酮特种纤维制备技术与应用
1、聚醚醚酮特种纤维制备技术 聚醚醚酮纤维具有高强度、高韧性、耐高温、耐化学腐蚀、阻燃和耐辐照等综合性能,被誉为综合性能最优异的热塑性芳香族聚合物纤维。项目团队于2006年开始自主研发,成功实现PEEK特种纤维的生产及应用,使我国成为世界上第二个采用自主知识产权生产PEEK纤维的国家,整体技术达到国际先进水平。 成果成熟度:可产业化。 应用领域及市场前景 本项目目前已实现产业化,产品可应用于航空航天、武器装备和民用高技术领域,主要应用制品为过滤网、过滤布、电束线管和混编复合材料等。PEEK纤维断裂强度较国外产品提高60%以上,可在-60~240℃长期使用,纤维的价格仅为国外产品的1/2 左右。 2、聚醚醚酮碳纤维上浆剂制备关键技术 利用可溶性聚芳醚酮前驱体对纤维进行上浆处理,再经水解处理,使可溶性聚芳醚酮上浆剂还原成为结晶性,实现结晶性聚芳醚酮对纤维的上浆处理。 经其上浆的碳纤维增强聚芳醚酮复合材料的界面剪切强度(IFSS)达到了83.1 MPa,相比原来的碳纤维增强聚芳醚酮复合材料提高91.5%,界面作用效果非常显著,复合材料在湿热环境中依旧保持有很高的界面性能。 成果成熟度:可产业化。 应用领域及市场前景:专业针对聚芳醚酮基复合材料(目前最火的热塑性碳纤维复合材料)碳纤维上浆剂,前景潜力巨大。
吉林大学 2021-05-11
聚醚醚酮特种纤维制备技术与应用
项目成果/简介:1、聚醚醚酮特种纤维制备技术聚醚醚酮纤维具有高强度、高韧性、耐高温、耐化学腐蚀、阻燃和耐辐照等综合性能,被誉为综合性能最优异的热塑性芳香族聚合物纤维。项目团队于2006年开始自主研发,成功实现PEEK特种纤维的生产及应用,使我国成为世界上第二个采用自主知识产权生产PEEK纤维的国家,整体技术达到国际先进水平。成果成熟度:可产业化。应用领域及市场前景本项目目前已实现产业化,产品可应用于航空航天、武器装备和民用高技术领域,主要应用制品为过滤网、过滤布、电束线管和混编复合材料等。PEEK纤维断裂强度较国外产品提高60%以上,可在-60~240℃长期使用,纤维的价格仅为国外产品的1/2 左右。2、聚醚醚酮碳纤维上浆剂制备关键技术利用可溶性聚芳醚酮前驱体对纤维进行上浆处理,再经水解处理,使可溶性聚芳醚酮上浆剂还原成为结晶性,实现结晶性聚芳醚酮对纤维的上浆处理。 经其上浆的碳纤维增强聚芳醚酮复合材料的界面剪切强度(IFSS)达到了83.1 MPa,相比原来的碳纤维增强聚芳醚酮复合材料提高91.5%,界面作用效果非常显著,复合材料在湿热环境中依旧保持有很高的界面性能。成果成熟度:可产业化。应用领域及市场前景:专业针对聚芳醚酮基复合材料(目前最火的热塑性碳纤维复合材料)碳纤维上浆剂,前景潜力巨大。技术先进程度:达到国际先进水平
吉林大学 2021-04-10
高品质低成本纤维素醚制备技术
Ø 项目结合生产实际,从配方(含溶剂体系)、工艺、设备等三方面进行优化、设计、实验与反复分析,在长期研究的基础上,集成多项专利技术,设计了一条制造设备独到、布局合理、工艺及配方科学的大规模生产线,实现了多品种、高品质、低成本、低消耗的纤维素醚生产。极大提高了反应过程的效率和产品均匀性,降低消耗、减少污染,提高了产品的应用性能,如溶解性、透光率、抗酸性、抗盐性、抗酶变性能等。
北京理工大学 2021-01-12
一种丁香叶总环烯醚萜苷的制备方法及用途
本发明提供一种丁香叶总环烯醚萜苷提取物的制备方法,是将丁香叶药材粉碎,加水或水/醇溶剂系统,采用加热回流/渗漉或超声提取,过滤,离心,调pH值至2-5,提取液通过大孔吸附树脂层析柱,用水及醇洗脱剂洗涤树脂,洗脱液减压回收醇,冷冻或喷雾干燥,即得总环烯醚萜苷。用本发明方法制备的丁香叶总环烯醚萜苷转移率可达75%以上,其中丁香苦苷含量达53.42%。通过添加各种药用辅料可制成用于治疗上呼吸道感染、急慢性扁桃体炎、急性肠炎及菌痢等感染性疾病的药物,制备药物的剂型为固体制剂。
浙江大学 2021-04-13
全固态太赫兹前端关器键件
 1、主要功能和应用领域 针对太赫兹高分辨雷达和通信系统应用需求,研究了常温固态太赫兹连续波发射和接收的总体方案和实现技术,研究了太赫兹平面肖特基势垒二极管非线性模型的精确模型,提出了太赫兹高效倍频电路和低损耗分谐波接收电路的拓扑结构,掌握了太赫兹倍频器和分谐波混频器的优化方法,解决了固态太赫兹关键技术的工艺难题,突破太赫兹连续波发射和接收的关键技术,打破国外技术封锁,提高自主创新能力,形成自主知识产权,相关技术水平达到国际先进,为我国太赫兹技术的发展和太赫兹系统的应用奠定技术基础,提供技术支撑。 2、特色和先进性 1)国内首次报道了400GHz以上频段的太赫兹源,输出功率大于5mW 2)首次开展了太赫兹高功率多管芯二极管的三维电磁模型研究; 3)国内首次报道了220GHz、380GHz和664GHz分谐波混频器,变频损耗指标由于10dB; 4)国内首次开展了基于光电结合的太赫兹高速无线通信系统实验,通信速率大于12.5Gbps; 5)太赫兹核心模块已应用于太赫兹成像和通信系统中。 3、技术指标 太赫兹倍频器指标对比 频段 国外研究机构 电子科技大学 美国VDI FARRAN 仿真 实测 59GHz 26dBm 20dBm 23dBm 17dBm 91.5GHz 22dBm 15dBm 16dBm 13dBm 110GHz 20dBm 12dBm 16dBm 12.5dBm 212.5GHz 15dBm 4dBm 13dBm 7dBm 340GHz 15dBm 4dBm 13dBm 4.5dBm 420GHz 9.5dBm 无 12dBm 4dBm 太赫兹分谐波混频器指标对比
电子科技大学 2021-04-10
一种低温热压键合方法
本发明提供了一种低温热压键合方法。首先在衬底上制作一层合金薄膜,然后通过选择性腐蚀工艺去除合金中的部分组分,使合金薄膜变成一层多孔纳米结构。利用该多孔纳米结构作为键合层,由于纳米尺度效应,可以在较低的温度和压力下实现热压键合。本发明工艺简单,操作方便,特别是较低的温度和压力显著降低了键合过程中的热应力与热变形,在光电集成、三维封装、系统封装等领域具有广泛应用。
华中科技大学 2021-04-14
全固态太赫兹前端关器键件
成果简介: 1、主要功能和应用领域 针对太赫兹高分辨雷达和通信系统应用需求,研究了常温固态太赫兹连续波发射和接收的总体方案和实现技术,研究了太赫兹平面肖特基势垒二极管非线性模型的精确模型,提出了太赫兹高效倍频电路和低损耗分谐波接收电路的拓扑结构,掌握了太赫兹倍频器和分谐波混频器的优化方法,解决了固态太赫兹关键技术的工艺难题,突破太赫兹连续波发射和接收的关键技术,打破国外技术封锁,提高自主创新能力,形成自主知识产权,相关技术水平达到国际先进,为我国太赫兹技术的发展和太赫兹系统的应用奠定技术基础,提供技术支撑。 2、特色和先进性 1)国内首次报道了400GHz以上频段的太赫兹源,输出功率大于5mW 2)首次开展了太赫兹高功率多管芯二极管的三维电磁模型研究; 3)国内首次报道了220GHz、380GHz和664GHz分谐波混频器,变频损耗指标由于10dB; 4)国内首次开展了基于光电结合的太赫兹高速无线通信系统实验,通信速率大于12.5Gbps; 5)太赫兹核心模块已应用于太赫兹成像和通信系统中。 3、技术指标 太赫兹倍频器指标对比 频段 国外研究机构 电子科技大学 美国VDI FARRAN 仿真 实测 59GHz 26dBm 20dBm 23dBm 17dBm 91.5GHz 22dBm 15dBm 16dBm 13dBm 110GHz 20dBm 12dBm 16dBm 12.5dBm 212.5GHz 15dBm 4dBm 13dBm 7dBm 340GHz 15dBm 4dBm 13dBm 4.5dBm 420GHz 9.5dBm 无 12dBm 4dBm 太赫兹分谐波混频器指标对比
电子科技大学 2015-12-24
兴奋性稳态调控的分子机制
团队合作发现了兴奋性稳态调控的分子机制。课题组使用钠通道阻断剂(TTX)阻断动作电位以模拟神经元兴奋性的长期降低。在TTX撤除后,动作电位的持续时间显著延长,神经元兴奋性代偿性增加,提示神经元出现了兴奋性稳态调控现象。机制研究发现,上述兴奋性稳态调控是由于Nova-2介导的钾通道(BK通道)mRNA选择性剪切降低所致。值得注意的是,该研究发现长时间TTX处理神经元时,虽然神经元胞体不会产生动作电位,但是神经元突触却产生了明显去极化,足以激活突触部位的L-型钙通道。后者通过其下游的钙调蛋白激酶(βCaMKK和CaMKIV)将信息传递入细胞核,引起Nova-2磷酸化并向核外迁移,导致其介导的BK通道mRNA选择性剪切下降 上述研究为近30年前提出的“稳态反馈环路”假说提供了完整证据(图2)。考虑到该信号通路中多个分子(AMPA受体、L-型钙通道、钙调蛋白激酶家族、Nova-2、BK通道)与自闭症、精神分裂症、抑郁症等神经/精神疾病密切相关,提示该通路的异常可能是上述疾病发生的重要机制。
中山大学 2021-04-13
肿瘤靶向小分子多肽药物的研发
该多肽可望直接开发为国家原创抗癌一类新药或作为分子导弹用于抗肿瘤新药研发和分子标记。
西南交通大学 2016-06-23
揭示特殊转录激活分子的机制
转录调控是细菌应对环境胁迫和病原菌缓解抗生素压力的重要手段,由细菌的转录核心机器 RNA 聚合酶和一系列转录起始 sigma 因子共同完成。在通常情况下,细菌的看家 sigma 因子(如大肠杆菌的 sigma 70 )负责大多数的基因表达,而在环境胁迫下, sigma S 则快速占据主导,并通过开启特定基因的表达来帮助细菌适应不利环境。与细菌的看家 sigma 因子相比, sigma S 的活性通常较低,其功能的发挥通常需要转录激活因子的协助,而 Crl 正是一种 sigma S 特异的转录激活因子。 此前,对于 Crl 激活转录的分子机制不甚清楚。在该研究中,合作者首先解析了 E. coli Crl 转录激活复合物的 3.8 Å 的冷冻电镜结构,该复合物包括了 E. coli 的 RNA 聚合酶、转录起始因子 sigma S 、 Crl 、以及启动子 DNA 。在该结构中, Crl 主要与 sigmaS 的 domain  2 相互作用,同时也与 RNA 聚合酶的最大亚基 bet a’ 有少许相互作用。与绝大多数传统的转录激活因子不同,电镜结构显示 Crl 并不结合启动子 DNA ,因此单从结构本身较难完全解释 Crl 对于 sigma S -RNAP 的转录促进活性。在此基础上,上科大免化所团队进一步利用氢氘交换质谱( HDX-MS )对该系统进行了深入研究。氢氘交换质谱的结果揭示, Crl 不仅直接结合 sigmaS  的 alpha2-alpha3 螺旋( Figure 1A ),还能够通过变构调节作用稳定 sigmaS 的  alpha4 、 alpha5 等多个结构单元( Figure 1A-C ),而这些结构单元的稳定将能够促进 sigma S 与 DNA 以及 sigma S 与 RNA 聚合酶之间的相互作用( Figure 1D )。基于以上数据,研究人员提出 Crl 通过特异性结合转录起始因子 sigma S ,稳定 sigma S 的活性构象,从而促进 sigmaS 与 RNA 聚合酶以及启动子 DNA 的结合组装,进而激活 sigma S-RNAP 介导的转录。这一机制在后续的功能实验中得到了进一步验证。该工作呈现了一种新的转录因子与 RNA 聚合酶的结合方式,揭示了一种新的细菌转录激活分子机制。
上海科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1