一种基于改进二维经验模态分解算法的图像去噪方法
本发明公开了一种基于改进二维经验模态分解算法的图像去噪方法,首先,将待去噪图像经传统BEMD算法进行自适应分解得到各阶IMF后,对各个IMF的概率密度函数与待去噪图像概率密度函数之间的相似性进行测量,其次,根据相似性测量值区分出噪声主导模态函数与信号主导模态函数的边界索引值,然后,使用小波去噪算法对噪声主导模态函数进行降噪处理得到实际的图像噪声,接着,重构出与原图像具有相同信噪比的多幅图像后对其累加求平均、实现将噪声压缩到低阶IMF中,最后,使用BEMD?DT对该平均图像进行去噪处理。通过本发明方法对图像进行去噪,取得效果均好于小波降噪以及传统BEMD等降噪方法的去噪效果。
东南大学
2021-04-11