高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高介孔率、强疏水性新型活性碳材料及其高效吸附回收VOCs技术
高校科技成果尽在科转云
西安交通大学 2021-04-10
天然沸石的改性和应用研究及醋酸脱碘吸附剂的产业化
我国富产天然辉沸石(STI),结构热稳定性仅在 300°C以下,无法直 接制成沸石工业催化剂和吸附剂,通常仅能将其结构破坏,作为普通 硅铝酸盐原料生产水泥或合成低硅分子筛,资源浪费严重。结构研究 证实该沸石纯度和品位高,骨架中有十元环(0.47×0.50 nm)和八元 环(0.27×0.56 nm)开放孔道,与工业上广泛用作分子择形催化剂和 高效吸附剂的 ZSM-5 和 ZSM-35 等相近,在吸附分离、催化、新型功能材料等领域有广泛的
复旦大学 2021-01-12
高选择性吸附树脂的结构设计及天然产物分离纯化工艺研究
    由于天然植物的各类有效成分具有各自特殊的结构特点,因此针对不同的有效成分我们开发了专用的提取树脂,例如黄酮类有效成分提取专用树脂、生物碱提取专用树脂、有机酸提取专用树脂等,成功制备了天然植物各有效成分的高纯度提取,且与现有树脂法提取工艺相比,吸附容量大大提高,生产工艺简单,生产成本降低。这类专用树脂的研发和生产,有效弥补了目前商品化提取树脂结构单一、使用中仍以盲目筛选为主的缺陷,对于天然植物深入的药用硏究有重要的实际应用价值。
河北工业大学 2021-04-13
一种吸附全氟化合物的磁性纳米复合材料及其制备方法
本发明属于新材料领域,涉及磁性纳米复合材料,特别涉及一种选择性识别全氟化合物的高吸附容量磁性纳米复合材料及其制备方法,以解决现有吸附剂识别机制单一或选择性不理想的问题。其特征在于:以亲水基团修饰的 Fe3O4 纳米颗粒为基底,“一步法”合成由全氟辛基和胺基功能化的磁性纳米复合材料,制备方法简便快速、成本低廉、易于操作。材料对全氟化合物的识别基于氟氟相互作用和静电吸引,显著提高了其对目标分析物的特异性识别能力和吸附容量;制备得到的磁性纳米复合材料为核壳结构,表面吸附赋予了材料快速的吸附动力特征,加之材
华中科技大学 2021-04-14
可降解高分子吸附剂的制备及其在水资源保护中的应用
针对目前污水处理中的设备复杂、成本高及二次污染等技术瓶颈问题,本项 目研发了可降解高分子絮凝剂,并与超声方法联合使用,对污水进行处理,解决了目前污水处理的二次污染和高成本问题,产生了较好的社会效益。实现了水资源的修复与循环利用、天然资源的开发与应用以及廉价高效进行污水处理等科技创新和技术进步。获授权发明专利 8 件,申请 PCT 发明专利 1 件;第三方检测结果;发表论文 20 余篇。进行了合成中试和推广试用。成果的技术指标、创新性与先进性以天然产物海藻酸钠为基体,得到新型的改性海藻酸钠絮凝剂;在改性海藻酸纳分子中引入磁性纳米粒子基团,合成了具有磁响应性的纳米絮凝剂;对水中的重金属离子和有机杂质进行了吸附和絮凝作用研究。将絮凝技术与物理超声方法联合使用,将声空化效应运用到大容量废水处理中,设计并制备了新型动力式与压电式两种换能装置,用超声-臭氧-紫外联用技术对工业废水中的有机污染物进行去污处理,取得很好的效果。产品的吸附容量大、脱除率高、速度快,后处理容易,无二次污染,环境友好。对于含有重金属离子 Pb2+、Cu2+ 、Hg2+、Cd2+ 、 Fe3+、Ni2+ 的工业污水进行吸附实验,结果表明:对于重金属离子去除率大于 95%, 选择性吸附性能, Pb(II) > Cu(II) > Hg(II) > Cd(II) > Fe(III) > Ni(II) >Cr(VI)。 
江南大学 2021-04-13
低温快速制备纳米金属间化合物涂层技术
本项目为一种低温快速制备纳米铝金属间化合物涂层技术。这种新技术利用不同材料和直径的介质球,通过机械振动使介质球在封闭的空间(渗罐)内往复运动,产生冲击,作用在欲形成涂层的金属/合金粉末颗粒和零件表面,使金属/合金粉末颗粒发生粉碎、塑性变形,并与零件表面发生粘结,在440-600℃范围内,通过粉末烧结、界面反应和零件表面原子向粘结于表面的金属/合金粉末颗粒内的扩散过程,形成纳米金属化合物涂层。例如,在440~600℃,经过15至180分钟的振动处理,可以在20钢表面制备出10~100微米厚的铝化物涂层。该涂层具有单层纳米结构,组织致密、成分均匀、没有粗大晶粒和孔洞等缺陷,具有优异的抗高温氧化性能和抗高温硫化性能。可以在各种金属和合金表面制备纳米金属间化合物涂层。还可以制备弥散各种纳米陶瓷颗粒的纳米金属间化合物涂层。在铁、钴、镍基合金表面制备出纳米金属间化合物涂层和弥散各种纳米陶瓷颗粒的纳米金属间化合物涂层。具有优异的优异的抗高温氧化性能和抗高温硫化性能。
北京科技大学 2021-04-11
强耦合作用钼基金属杂化材料研究
新能源转换和储存技术是当今世界解决目前化石能源危机和环境污染问题的核心途径。廉价的电解水产氢催化剂和高容量的储能材料成为大规模推广此类新能源技术的关键。对于电解水产氢而言,贵金属铂基催化剂的产氢活性最好,但其资源有限,无法推广使用。相比而言,非贵金属钼基材料以其特殊的理化性质表现出优异的分解水制氢活性,但存在导电性低及材料团聚问题,这导致材料活性位点暴露少和稳定性差等问题。为了解决这些挑战性问题,近日,北京大学工学院研发团队提出了一种具有强耦合作用钼基金属杂化材料的制备新策略提升电催化产氢性能,并发现强耦合材料对于储钠展现了优异的容量、倍率和稳定性。
北京大学 2021-02-01
Fe3Al基金属间化合物合金
基金属间化合物原料成本较低,具有低比重、优异的抗氧化、抗硫蚀等特点,可以应用于对强度要求不太高的中高温氧化或硫蚀环境中,如有色冶炼厂和高浓度烟气收尘设备及制酸系统中的烟气净化设备、转化器、热交换设备极板和壳体;汽车尾气管、电厂排气的烟气管道等。从1991年起,孙祖庆教授及其研究小组在国家科技部863专家委员会、国家自然科学基金委及中国-福特基金的支持下,开展了系统工作。 主要创新性研究成果有以下几点: 首次提出Fe3Al基合金的B2热机械处理工艺,使合金在空气中的室温拉伸延伸率提高到15%以上。 通过自行开发的提高合金中高温抗蠕变性能的处理工艺,研制成功Fe-28Al-XCr系金属间化合物材料。申请两项发明专利并已获得批准(专利号:ZL 93 1 14921.5)(专利号:ZL 93 1 21242.X)。 通过Cr, Ti, Mn, Ni, Mo等代位合金元素原子在Fe3Al基金属间化合物合金亚点阵占位的中子衍射研究及交互作用能计算探讨上述各元素对室温塑性的影响。Fe3Al基合金热加工过程中的变形织构研究。 在解决了该系列合金采用传统工艺制备大体积材料、并获得薄板的基础上,开展了超塑性行为、可焊性研究,并提出优化的热弯成型及焊接工艺。申请焊接发明专利一项,已公开(公开号:CN1251329A)。 Fe3Al基合金薄板在有色冶炼后处理含氧环境中的现场试验结果显示了它比不锈钢优异的抗蚀性能。通过鉴定一项。 B2结构Fe3Al单晶力学行为各向异性机理研究。不同取向单晶宏观拉伸切应力—切应变曲线形式、各阶段加工硬化行为与各滑移系的激活方式、晶体转动及位错组态的演变直接相关。 目前,有关Fe3Al基合金冶炼、热加工、焊接及组织性能控制的技术已经成熟,在普通钢铁企业现有的冶炼及轧制设备条件下,可以通过真空熔炼或非真空熔炼加电渣重熔工艺精炼来制备Fe3Al基合金铸锭,通过锻造及轧制设备生产各种规格的Fe3Al基合金板材;通过热弯工艺及焊接工艺可获得Fe3Al基合金焊管。
北京科技大学 2021-04-11
重轨钢中非金属夹杂物控制关键技术
铁路作为一种现代化交通运输工具,在世界范围内具有广阔的发展前景。目前铁路发展的整体趋势是高速和重载化,对重轨钢质量提出了更高的要求,不仅要求高洁净度,高强度、高韧性,而且必须具有良好的抗疲劳性能。重轨钢生产过程及使用过程中,非金属夹杂物是影响其质量最重要的原因之一,常引起探伤不合、易产生疲劳裂纹等,主要是由于其钢中非金属夹杂物控制存在以下三个难题:(1)夹杂物尺寸大且化学成分复杂;(2)冶炼工艺复杂,尤其在于脱氧及精炼等重要环节;(3)尖晶石类夹杂物突出,严重恶化钢轨性能。因此,合理控制重轨钢中的非金属夹杂物,对重轨钢产品质量的提生及铁路事业的进步具有重要意义。(1)重轨钢冶炼脱氧及原辅料成分设计技术。重轨钢采用无铝脱氧工艺,但是在脱氧剂的使用方式及用量上缺乏理论指导,因此,重轨钢脱氧过程中必须对脱氧剂的使用方式及用量进行合理优化控制,本项目提出仅在转炉出钢时加入少量硅钙钡脱氧剂控氧,同时配合精炼扩散脱氧,能将钢中 T.O. 含量控制在 10 ppm以下,不仅有效节约了生产成本,而且促进了夹杂物的去除、有效降低了夹杂物的尺寸。在重轨钢冶炼原材料的控制方面,国内企业生产时更倾向于买价格低廉的铁合金等原材料,从而降低生产成本,但是对于铁合金及铁合金对重轨冶炼的影响研究几乎为空白。本项目提出了使用低铝铁合金,降低钢中的酸溶铝含量,抑制钢中高 Al 2 O 3 夹杂物的形成,从而提升夹杂物变形能力,有效防止因脆性夹杂物造成的疲劳缺陷。(2)重轨钢中硫化物夹杂控制技术. 由于 MnS 有良好的变形能力,而且重轨钢轧制过程中变形量大,MnS 夹杂物可能延伸很长,可能成为夹杂物超标和引起超声波探伤不合的重要原因之一。此外,大尺寸长条状 MnS 可能成为裂纹的起点,在应力作用下首先在和钢基体的交界处形成裂纹源。本项目首先通过优化精炼造渣制度进一步去除钢中 S 含量,提出将钢中得 S 降低到 40ppm 以下。其次,通过对重轨钢连铸坯及钢轨硫化物的分布进行研究分析,从而对冷却制度进行优化,提出先若冷后强冷的原则,使激冷层优先析出的大量细小的 MnS,减小其他凝固区的 S 的压力,从而来控制重轨钢中硫化物。此外,还提出了使用 CSC(Comparison-Segmentation-Combination)方法,计算了 MnS 在不同温度下在不同温度范围内的准确的热力学生成曲线,并研究了热处理工艺升温速率、保温温度和保温时间等对 MnS 夹杂物的影响,促进已生成的长条状 MnS 向弥散的纺锤形转变,从而达到控制 MnS 形态的目的。(3)重轨钢中尖晶石类夹杂控制技术 重轨钢采用无铝脱氧工艺,但是钢中发现MgO-Al 2 O 3 夹杂物,且部分尺寸较大,严重影响产品质量。本项目首先对重轨钢中尖晶石夹杂物的形成机理进行研究,得出重轨钢中危害较大的尖晶石类夹杂物来源于钢中复杂氧化物夹杂在降温冷却过程中的析出,从而提出使用低铝低镁合金,VD 前扒渣降低耐材侵蚀等减少夹杂物中 Al 2 O 3 和 MgO 含量,抑制尖晶石夹杂物的析出。此外,VD 前扒渣也有利于控制复杂氧化物夹杂中 CaO 含量的成分,对控制夹杂物的尺寸及提高产品质量有重要作用。
北京科技大学 2021-04-13
取向硅钢中非金属夹杂物控制关键技术
随着我国电力工业的不断发展,大型发电机组的制造的水平不断提高,对我国取向硅钢产品的性能提出了更高的要求。相比于一般钢铁产品,取向硅钢的制造工艺和设备复杂,生产过程影响因素众多,对化学元素和析出相的控制提出了极高的要求,因此被称为“钢铁中的艺术品”。目前,我国能够生产取向硅钢的企业只有宝武集团、首钢集团等少数企业。取向硅钢的磁性能受到钢成分和析出相的影响很大。其中由于其钢中非金属夹杂物和析出相控制存在以下两个难题:(1)取向硅钢在冶炼过程中,钢中化学成分要求实现窄成分控制,尤其是在精炼过程中对酸溶铝([Al] s )和钛([Ti])含量等的控制。其中钢中[Al] s 和[Ti]含量对硅钢铁损和磁感强度的影响很大,目前取向硅钢的[Al] s 很难稳定的达到的要求,钢中[Al] s 的命中率不高,同时[Ti]控制也不稳定。本项目通过洁净钢的冶炼技术,确定当前取向硅钢中影响硅钢磁性的主要元素为酸溶铝和钛含量,其控制目标为[Al] s =0.0265%±0.001%和[Ti]<25 ppm。(2)取向硅钢精炼渣成分设计技术。本项目首先通过工业实验数据和热力学计算研究了精炼渣对钢中酸溶铝和钛含量的变化的影响。通过动力学计算,重点研究了钢包镇静过程的不同时刻,钢中酸溶铝和钛含量的变化规律,为取向硅钢冶炼过程中酸溶铝和钛含量的变化的精准控制提供理论指导。本项目得出增加精炼渣碱度可以增加取向硅钢中[Al] s 含量。为了降低取向硅钢中[Ti]含量,应当严格控制精炼渣中 TiO 2 含量。,从而更系统准确地确定了有利于控制取向硅钢中[Al] s 和[Ti]含量的最优精炼渣成分。
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 45 46 47
  • ...
  • 79 80 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1