高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
重污染行业水污染物减排技术集成
化工、制药、印染、造纸等行业废水排放量大、污染物浓度高,并且这些重污染行业排放的废水一般都含有难降解生物、甚至有毒害作用的污染物质,常规的物化、生化处理工艺很难把这些行业的废水处理到国家一级排放标准。为此,很多企业不得不通过稀释手段来实现COD达标排放的目标。但是,随着节能减排计划的实施,各地都加大了对COD总量的控制力度。同时,地方政府也给企业下达了COD减排任务。此外,一些地方政府还颁布了高于国家废水排放标准的地方标准。为了完成COD减排任务或达到更加严格的废水排放标准,大部分企业都必须对现有污水处理设施进行技术改造。华东理工大学环境工程研究所针对化工、制药、印染、造纸等行业废水的特点,研究开发了多项难降解有机废水处理技术,包括各种预处理技术、生物处理技术、深度处理技术,及多项处理技术的组合与集成。目前,这些技术已成功应用于多个化工、精细化工、制药企业的废水改造工程或新建工程,为这些企业解决了高COD、高盐分、高氨氮废水处理的难题,使企业在较低的成本下实现了达标排放的目的,并超额完成了COD减排任务。(1)处理有机废水的BCB组合工艺,授权发明专利,专利号:ZL200510024414.6(2)一种氧化反应催化剂可循环使用的废水处理方法,授权发明专利,专利号:ZL200610030562.6
华东理工大学 2021-04-11
高精度图像对焦伺服控制器及显微成像系统
        技术成熟度:技术突破         领域存在着景深影响效率的突出问题,本产品以高性能异构处理器为核心运算单元,以嵌入式手段通过视觉流与控制流的严格对位,高性能实时完成视频控制信息的结算,并直接输出电机驱动信号控制相关执行机构完成闭环控制。         本产品主要面向高性能伺服闭环控制的视频应用领域,能够显著提升显微工业自动化领域的视频对焦及对位处理的效率及精度,亦可实现宏观领域的视觉嵌入化控制闭环应用。         意向开展成果转化的前提条件:中试放大及产业化工艺开发资金支持
东北师范大学 2025-05-16
燃煤电厂污染控制技术与优化一种采用白泥的双塔脱硫系统
成果介绍 成果名称:一种采用白泥的双塔脱硫系统 成果参与单位:华北电力大学 成果完成人:马双忱 知识产权情况:成果对应发明及实用新型专利11项,已形成完整知识产权体系 创新点 本团队主要从事燃煤污染控制,包括脱硫脱硝、碳减排、脱硫废水处理、高温高压水化学等技术开发与工艺优化研究,本科研团队瞄准电力行业环保需求,切实解决行业发展中存在的技术问题,在脱硫废水零排放、白泥脱硫、脱硝副产品硫酸氢铵控制、碳捕集、燃煤固废综合利用等领域开展创新研究,并将科研成果与生产实践紧密结合,不少成果已在生产中得以应用,促进了行业可持续发展。该成果在电力污染控制领域开展创新研究,以企业需求为导向,解决企业生产过程中面临的污染控制与节能减排方面技术难题。 应用案例 华电泸州电厂、国电南宁电厂白泥脱硫 华电渠东电厂ORP调控脱硫系统氧化风机 华电襄阳电厂ORP与氯离子调控脱硫系统运行优化 保定深能电厂脱硫废水零排放与脱硫系统优化控制 获奖情况 2017年燃煤电厂典型环保工程运行绩效综合评价与应用获中国电力创新奖三等奖 2018年大气污染控制工程课程群的建设与改革实践获北京市教育教学成果奖二等奖 2021年燃煤电厂大气污染防治运行保障技术及应用获河南省科技进步奖二等奖 2022年燃煤机组脱硝提效及空预器防堵关键技术研究及应用获河南省电力科学技术进步奖一等奖
华北电力大学 2023-07-14
高效纳米金属催化剂控制合成高效合成生物质
在二氧化碳绿色溶剂中低温一步法实现纳米金属颗粒的控制性合成;2. 合成后直接得到大量的固体催化剂,无需高温高压,无需使用任何的有机或无机溶剂;3 . 生物质固体废物碳中性是可再生的低碳能源,实现生物质废物能源化的价值;4. 液体燃料高选择性(接近100%)高产率合成。
中山大学 2021-04-10
碳素结构钢中非金属夹杂物控制关键技术
随着经济的快速发展,社会上对碳素结构钢的生产和质量提出了更高的要求。碳素结构钢属于大批量生产的钢种,在钢的总产量中占 70%以上。碳素结构钢的种类众多,包括各种钢板、钢管、钢带、钢条以及各种型钢、条钢等,主要用作焊接、铆接和螺栓连接的钢结构,广泛用于建筑、桥梁、铁道、车辆、船舶、化工设备等,是一种价格低廉、用途广泛的工业钢种。按照脱氧方式不同,碳素结构钢可分为沸腾钢、半镇静钢和镇静钢,对于 Al 镇静钢,钢中大颗粒夹杂物是导致钢材在弯折时出现断裂的主要原因。此外,一般情况下,碳素结构钢中的氧含量较高,导致非金属夹杂物含量也较高,可以应用氧化物冶金技术利用碳素结构钢中非金属夹杂物,以提高碳素结构钢的力学性能。(1)Al 脱氧碳素结构钢脱氧方式优化技术。对于采用 Al 脱氧方式的碳素结构钢,钢中非金属夹杂物主要成分为 Al 2 O 3 -SiO 2 -MnO 系,夹杂物中 Al 2 O 3 含量越高,夹杂物尺寸越大,而这一类非金属夹杂物属于低熔点夹杂物,在轧制过程中容易 118 / 298变形为细长条状,严重影响钢基体的连续性,在冲击过程中引发钢材的断裂。减少钢材断裂的关键是控制钢中 Al 2 O 3 含量较高的非金属夹杂物,这一类非金属夹杂物是在转炉出钢时加入脱氧剂脱氧时产生的。在转炉出钢时,可采用以下 3种脱氧方式减少 Al 2 O 3 含量高的大尺寸夹杂物的生成。a.先用 Si-Mn 合金进行预脱氧,后用 Al 合金进行终脱氧;b.减低转炉出钢氧含量,减少 Al 合金的用量;c. 采用 Al-Ti 符合脱氧方式,避免大尺寸夹杂物的生成。(2)Ti 微合金化氧化物冶金技术。在含 Ti 低碳钢中细小弥散的氧化物质点在很宽的温度范围内热力学上是稳定,Ti 脱氧生成的 Ti 2 O 3 粒子周围会形成贫锰区,贫锰区的形成被认为是晶内铁素体非均质形核的主要驱动力。向钢中添加少量Ti 合金,形成 Al-Ti 复合脱氧制度,形成具有氧化物冶金效果的钛氧化物,明显细化了铸坯的原奥氏体晶粒尺寸,大幅提高了钢材的冲击韧性。
北京科技大学 2021-04-13
奥氏体不锈钢中非金属夹杂物控制关键技术
随着我国国民经济的不断发展,对不锈钢表面质量提出了更高的要求。超洁净不锈钢被广泛地应用于高端电子产品 Logo、高端装饰行业、以及核电行业等对表面质量严格要求的领域。高等级光亮表面不锈钢板对成品表面质量几乎是零表面缺陷要求,此类钢产品时炼钢冶炼难度极高,主要是由于其钢中非金属夹杂物控制存在以下三个难题: (1)高熔点的夹杂物造成了冷轧板产品线鳞缺陷; (2)冷轧板表面抛光后不变形夹杂物引起的麻点类缺陷;(3)氮化钛夹杂物引起的冷轧板达到米级别的长条纹缺陷。此前,我国超洁净不锈钢产品完全依赖于国外进口。因此,开发超洁净不锈钢冶炼关键技术为打破此领域国外产品及技术垄断、实现国内自主生产做出了卓越贡献。(1)不锈钢冶炼脱氧及原辅料成分设计技术。对于不锈钢冶炼原材料的控制方面,国内企业生产时更倾向于买价格低廉的铁合金等原材料,从而降低生产成本,但是对于铁合金及铁合金对不锈钢冶炼的影响研究几乎为空白。国外学者对于铁合金做过一些研究,但主要是集中于铁合金洁净度对碳钢的影响,关于铁合金对奥氏体不锈钢夹杂物的研究很少。同时,国外学者研究铁合金的种类主要集中在铝含量上,然而对铁合金中钙含量对不锈钢的影响却未见报道。本项目首先提出了使用低铝无钙铁合金,降低钢中的酸溶铝含量,同时降低钢中 Al2O3含量,从而提升夹杂物变形能力,但此类铁合金成本较高。在此基础上又提出了使用高铝高钙铁合金,此类铁合金只是在冶炼传统高铝无钙铁合金添加小部分的钙,成本增加极低,但是由于钙的添加,可以在最初夹杂物生成之时就显著提升夹杂物中的 CaO 含量,从而显著提升夹杂物变形能力。(2)超洁净不锈钢精炼渣成分设计技术. 传统的铝脱氧不锈钢都是通过高碱度精炼渣提升钢材的洁净度,减少钢中夹杂物数量。但是本项目发现即使把钢中总氧降低到 10 ppm 以下也不能解决其高 Al 2 O 3 含量的夹杂物造成的线鳞缺陷。因此通过对硅脱氧不锈钢中精炼渣碱度由原来的 2.3 降低到了现在的 1.6,虽然夹杂物的总数量没有降低,但是成功的把钢中的夹杂物控制在低熔点区,显著地提升了夹杂物的变性能力,有效地改善了高表面质量奥氏体不锈钢产品的线鳞缺陷和表面抛光缺陷。此外,本项目对调整精炼渣成分的研究非常全面,国内学者研究的炉渣碱度对钢中夹杂物的影响,其中只研究碱度为 1.0 和 1.5 的个别情况,这样很难确定出最优精炼渣成分;本项目研究应用 FactSage 热力学计算软件建立了渣-钢-夹杂物平衡反应热力学模型,通过模型研究了不同精炼渣成分对钢液成分、脱硫、夹杂物成分、夹杂物熔点、耐火材料侵蚀等的影响。通过对 400 种不同精炼渣系进行设计优化,确定精炼渣成分;同时,在实验研究方面,本项目从碱度 1.0-2.3,连续考虑了 9 中不同的碱度对不锈钢中夹杂物的影响,此外还研究了4种不同渣中MgO含量和4种不同渣中Al 2 O 3 含量对不锈钢中夹杂物的影响,从而更系统准确地确定了有利于超洁净不锈钢夹杂物控制的最优精炼渣成分(3)不锈钢精准钙处理改性夹杂物模型。通过可用改性处理的方法将钢中的夹杂物改性为低熔点的液态夹杂物,增强其轧制过程的变形能力以减小其对钢材质量的危害,也可避免水口堵塞现象。然而,钙处理喂钙线量的多少对钢中夹杂物的变性效果影响很大。但是大多数钢铁企业只是知道需要钙处理,对于钙处理时最优喂钙线量并没有太多理论研究,因此,在实际生产过程中经常出现钙处理效果不好、甚至钙处理后产品质量更差的现象。本项目通过对超洁净不锈钢不同钢液成分条件下钙处理进行的计算,确定了超洁净不锈钢的不同成分条件下最优的喂钙线量,可实现在线对不锈钢中夹杂物的精确钙处理改性控制,与国外同类型模型相比,实现了了不锈钢生产过程在线应用,考虑的反应物和产物更全面,计算结果更直观。
北京科技大学 2021-04-13
高硫齿轮钢中非金属夹杂物控制关键技术
含硫齿轮钢中 S 含量通常为 0.015-0.02%,同时为了保证钢水可浇性,生产过程中采用钙处理。目前是先喂 Ca 线,软吹后再喂入 S 线,由于 CaS 的生成,导致 Ca 和 S 的损耗大,收得率不稳定。由以上可知,目前制约含硫齿轮钢生产过程中的主要因素之一是钢中非金属夹杂物,因此,很有必要对含硫齿轮钢生产过程中洁净度进行控制与提升。(1)高硫齿轮钢中硫化物控制技术。开展硫化物生成热力学计算,确定不同钢液成分对钢中硫化物析出种类及析出温度的影响;进行硫化物析出及长大的相关动力学计算,确定硫化物析出尺寸及析出量随温度、反应物浓度的变化。同时研究了氧化物和硫化物的联合控制研究,研究总氧含量对硫化物夹杂含量及形貌的影响,研究不同类型氧化物与钢中析出的硫化物的大小、数量和分布的关系,确定有利于钢中 MnS 弥散分布的氧化物夹杂种类,实现高硫齿轮钢钢中氧化物和硫化物的联合控制,降低 A 类夹杂物评级。(2)高硫齿轮钢精准钙处理改性夹杂物模型。高硫齿轮钢生产时采用 Al脱氧使得钢中生成大量的以 Al 2 O 3 为主的高熔点夹杂物,为了避免浇注过程水口结瘤以及减小高熔点 Al 2 O 3 夹杂物在后续轧制过程中对钢材质量的危害,生产过程中需要进行钙处理将钢中的高熔点夹杂物改性为低熔点的液态夹杂物。然而,钙的加入量存在一个合适的范围,过多的钙加入形成的大量的 CaS 同样会导致水口结瘤。本项目基于吉布斯自由能最小的原理,对“高硫齿轮钢-夹杂物”进行热力学平衡计算,并根据“高硫齿轮钢-夹杂物”反应平衡相图,得到“液态窗口”的加钙范围,实现了高硫齿轮钢生成过程中的精准钙处理控制。
北京科技大学 2021-04-13
超洁净齿轮钢中非金属夹杂物控制关键技术
汽车工业是衡量一个国家经济发展水平的重要标志,汽车齿轮是汽车上重要的传动零件,齿轮质量的高低决定着汽车性能的好坏。通常,高质量的齿轮钢应具有四个方面的质量指标,即窄的末端淬透性宽、洁净度高、细小均匀的晶粒度和优良的表面质量。齿轮钢的洁净度对于齿轮钢产品性能具有重要影响,其中大颗粒的脆性点状不变形夹杂、呈串状分布的 Al 2 O 3 对齿轮钢的疲劳寿命最有害。而为了细化晶粒,通常需要在齿轮钢中保持一定的酸溶铝含量(0.010%-0.040%)。因此,必须解决如何在保持一定酸溶铝含量的情况下尽量减少钢中的 Al 2 O 3 夹杂物含量的难题。(1)齿轮钢精准钙处理改性夹杂物模型。为控制齿轮钢中的串状脆性点状不变形 Al 2 O 3 夹杂物,同时进一步改善齿轮钢的水口结瘤,需要对于齿轮钢中的Al 2 O 3 夹杂进行改性处理。通过改性处理的方法将钢中的 Al 2 O 3 夹杂物改性为低熔点的液态夹杂物,增强其轧制过程的变形能力以减少大颗粒脆性串状不变形夹杂对齿轮钢疲劳寿命的影响,也可改善水口结瘤现象。但必须要关注的是,喂钙量对于夹杂物的改性效果具有重要的影响,喂钙量过低无法将钢液中高熔点的Al 2 O 3 及 Al 2 O 3 ·MgO 完全改性,而喂钙量过高则导致生成更高熔点的 CaS 及 CaO生成,从而恶化齿轮钢产品质量。同时钢液成分对于钙处理具有较大影响,而目前大多数企业还仅通过钙铝比指导现场的喂钙操作。本项目基于不同喂钙速度、钙线插入深度的统计,得到最优喂钙速度和钙线插入深度下稳定的钙收得率,并结合喂钙操作过程中导致的钢液增氧以及喂钙后至中间包浇注钙损,对超洁净齿轮钢不同钢液成分条件下钙处理进行热力学计算,确定了超洁净齿轮钢的不同成分条件下最优的喂钙线量,并结合精准钙处理软件,实现超洁净齿轮钢在线精准钙处理,通过理论计算并结合现场钙收得率,进一步优化现场的喂钙操作。(2)电磁搅拌对超洁净齿轮钢铸坯中夹杂物的影响研究。电磁搅拌使钢液在交变电磁场中产生电流,通过电磁力来控制钢液的流动、传热及凝固过程。目前国内普遍认为电磁搅拌可以提升铸坯的表面质量、提高钢的洁净度、扩大铸坯的等轴晶区、降低元素中心偏析,同时减轻或消除中心疏松和中心缩孔等作用。但也有报道随着结晶器电磁搅拌强度的增加,铸坯表层附近的负偏析更加严重,同时加剧枝晶转变区域的正偏析,恶化铸坯的均质性。为进一步明晰结晶器电磁搅拌对于超洁净齿轮钢夹杂物的影响,本项目通过对于有结晶器电磁搅拌和无结晶器电磁搅拌两种工况下,铸坯全断面夹杂物扫描,研究不同电磁搅拌条件对齿轮钢铸坯中夹杂物的影响,结合铸坯宏观偏析、微观组织等结果,优化结晶器电磁搅拌参数,从而提高齿轮钢的产品质量。
北京科技大学 2021-04-13
金属基复合材料液固高压成形工艺与控制技术
内容介绍: 针对金属基复合材料制备成本高、工艺过程复杂的难题,集真空压 力浸渗、挤压铸造及液固挤压三种工艺优点于一体,开发出的真空吸渗 一液固挤压一体化成形复合材料构件的新技术,可一次成形出合金及其 复合材料管、棒材等高性能制件,解决了增强纤维与基体金属润湿性差 的问题,同时克服了传统复合材料管、棒材成形方法均需二次变形的弊 端,可用于铝、镁基复合材料的成形,极大地降低了铝、镁合金及其复 合材料的制备成
西北工业大学 2021-04-14
伺服控制系统集成版-金属版人型套装
产品详细介绍 整体功能特点 结构化安装:安装更加高效、简便,连接处采用防松螺母。 布线美观:布线更加整齐、方便,整体美观度大大提升。 固件升级:主控器支持固件升级、伺服马达支持内部固件升级。   基本参数 自由度数量:16 尺寸:489x356x 66mm(横高x身高x 体宽) 材质(结构件):铝合金 直流供电:7.4V高倍率锂电池组(推荐7 V-9V DC) 控制方式:用户自主编程控制(可无线遥控、多机同步启动等) 调试与下载端口:Mini USB 保护设计: 短路保护、电量检测与报警 内部传感器: 声音传感器、2.4G高速通讯模块、3D加速度传感器   伺服马达 控制范围:0-359度控制(带数字反馈) 输入电压:4-9V DC 电流:0-2.2 A 力矩:12Kgf·cm 减速比:1:307 齿轮:高强度金属齿、传动效率高 外壳:高硬度环保材料 寿命:>10万Cycle(5kgf·cm下测得) 信号模式:串行命令模式和传统PWM模式 保护功能:过流、短路保护、过压保护、过热保护 特色功能:伺服马达支持内部固件升级 应用方式:舵机控制方式、减速电机控制方式、编码电机控制方式 接线方式:两边侧面各有一个输入/输出口,用于连接上一级与下一级伺服马达(串行连接方式)   3D人型伺服软件 基于微软.net平台+NXA3.1(微软3D开发平台)开发; 图形化编程与代码编程方式相结合,满足不同层次使用者的需求; 支持在线调试与仿真、支持三维与实体同步仿真、支持与传感器结合编程,扩展功能强大; 带偏差修正功能与常用动作库、程序一致性好、调试方便快捷。 通过调整机器人的动作,可以同时在虚拟和实体中仿真机器人动作,调整伺服马达角度的同时,软件会根据马达调整的角度来进行相应的矫正。
广州中鸣数码科技有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 217 218 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1