高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
贵金属离子捕捉剂
本产品是一种高效贵金属离子捕捉剂, 白色固体,不溶于水。其结构上含有大量功能基团,对于水中的贵金属离子如金、银、钯、铂有非常强的吸附能力。可以将贵金属离子定量捕捉。对于金离子的吸附容量超过文献的报道值,吸附率达到 98.3%。该产品合成原料易得,价格便宜,合成工艺简便,同时后处理容易,无污染。本技术在国内外处于领先水平,可用于冶金、电镀行业废水和地下水中贵金属的浓缩、回收,应用于资源回收再利用领域。同时本产品可用于净化水源,减少水中重金属离子的污染,有利于环境保护。
江南大学 2021-04-13
胶原纤维固载金属离子吸附材料
成果描述:电子、汽车、化工、冶金等工业企业每年要排放大量的氟磷砷废水。众所周知,过量的氟将引起“氟骨症”;磷是导致水体富营养化的主要原因之一;而砷是强致癌物质,被列为第一类重点监测的环境污染物。此外,我国许多地区作为饮用水的地下水中其氟磷砷也严重超标,如果直接饮用将严重危害人们的身体健康。 本技术以制革厂的边角料制取胶原纤维,将具有强配位结合能力的无毒金属离子固载在胶原纤维上制备新型吸附材料,该吸附材料将对氟磷砷等无机阴离子等具有较强的吸附能力(见下表)。该吸附材料不仅可用于氟磷砷等无机阴离子的吸附,而且可用于水体中染料、有机物及微生物的吸附。此外,由于该吸附材料为纤维状,吸附是在材料的表面进行,因此该类吸附材料的吸附和解吸速度快。该吸附材料可生物降解,对环境无污染。 该技术已获得两项国家发明专利(A、胶原纤维固载金属离子吸附材料及其制备方法和用途,专利号:ZL2004100401450;B、胶原纤维固载金属离子吸附材料对蛋白质的吸附分离,专利号:ZL200610021271.0)。市场前景分析:主要用于废水中氟磷砷等无机阴离子、染料、表面活性剂等的吸附去除。该类废水约占整个废水量的15-20%,市场需求很大。与同类成果相比的优势分析:与传统吸附剂相比,具有吸附容量大、吸附速度快的优点。吨水处理成本降低50%左右。国际先进。
四川大学 2021-04-10
胶原纤维固载金属离子吸附材料
电子、汽车、化工、冶金等工业企业每年要排放大量的氟磷砷废水。众所周知,过量的氟将引起“氟骨症”;磷是导致水体富营养化的主要原因之一;而砷是强致癌物质,被列为第一类重点监测的环境污染物。此外,我国许多地区作为饮用水的地下水中其氟磷砷也严重超标,如果直接饮用将严重危害人们的身体健康。 本技术以制革厂的边角料制取胶原纤维,将具有强配位结合能力的无毒金属离子固载在胶原纤维上制备新型吸附材料,该吸附材料将对氟磷砷等无机阴离子等具有较强的吸附能力(见下表)。该吸附材料不仅可用于氟磷砷等无机阴离子的吸附,而且可用于水体中染料、有机物及微生物的吸附。此外,由于该吸附材料为纤维状,吸附是在材料的表面进行,因此该类吸附材料的吸附和解吸速度快。该吸附材料可生物降解,对环境无污染。 该技术已获得两项国家发明专利(A、胶原纤维固载金属离子吸附材料及其制备方法和用途,专利号:ZL2004100401450;B、胶原纤维固载金属离子吸附材料对蛋白质的吸附分离,专利号:ZL200610021271.0)。
四川大学 2015-12-21
高能等离子喷涂金属陶瓷涂层防护技术
西安交通大学金属材料强度国家重点实验室下属等离子喷涂实验室,于93年引进美国90年代最新水平的9M型高能等离子喷涂设备,并拥有相关的涂层性能测试与评价技术手段,针对电力、能源、石油化工等国家大中型企业一些重要设备的关键零部件,由于高温、腐蚀、磨损引起的表面损伤和早期失效问题,通过失效分析、涂层设计和工艺优化,最终采用先进的等离子喷涂技术,有效解决了大型电站
西安交通大学 2021-01-12
高性能等离子体金属表面强化技术及装备
项目简介    渗氮渗碳强是广泛需要的技术,等离子渗氮渗碳强化零部件表面,环保、高效等, 但渗层不均、打弧等。本项目发明了一种交互式双阴极等离子表面热处理装备,强化电场强度,  
西华大学 2021-04-14
锂离子电池正负极材料、准固态锂金属电池等
万立骏院士,1957 年 7 月出生于辽宁省新金县,1987 年 6 月于大连理工大学获硕士学位,1996 年 3 月在日本东北大学获博士学位,1998 年回国到中国科学院化学研究所工作。2009 年 11 月当选为中国科学院院士。主要从事扫描探针显微学、电化学和纳米材料科学的研究。发展了化学环境下的扫描探针技术,在表面分子吸附和组装规律、纳米图案化、表面手性研究等方面取得系列成果。致力于能源转化和存储器件的表界面化学、电极材料制备方法学和材料结构性能的研究,设计制备了系列高性能纳米金属材料、金属氧化物材料和锂离子电池正负极材料等,并应用于能源和水处理领域。该工作通过光学显微镜对凝胶态聚合物电解液(GPEs)中锂离子的沉积/脱嵌过程的电化学行为及形成机理进行了研究。研究表明在低电流密度下,锂离子倾向于在电极表面均匀沉积,成微球状。当电流密度增大时,表面沉积的锂会演变成苔藓状进而形成枝状晶须。此外,作者通过剥离枝晶表面的SEI壳层,利用原子力显微镜(AFM)及电化学阻抗谱(EIS)对其尺寸,形貌,模量及电导率进行了测试。结果表明这类原位生长的SEI具有较为优异的理化特性,有希望直接引入固体电解液锂金属电池中对锂枝晶的生长进行有效的抑制。该研究阐释了锂枝晶的结构演变过程,并对其表面SEI层进行了深入的表征,有助于我们进一步认识锂金属电池的衰降机制。2020 年重要锂电成果有:Angew. Chem. Int. Ed.:通过人工非晶正极电解质界面实现持久电化学界面助力固/液态混合锂金属电池Angew. Chem. Int. Ed.:利用中温转化化学构建空气稳定、锂沉积可调节的石榴石界面Angew. Chem. Int. Ed.:准固态锂金属电池中锂枝晶及其固态电解质界面层的界面演化 J. Am. Chem. Soc.:准固态锂电池中 LiNi 0.5 Co 0.2 Mn 0.3 O 2 表面正极界面层的动态演化J. Am. Chem. Soc.:全固态合金金属电池的微观机理:调节均匀锂沉积和柔性固态电解质界面演变
大连理工大学 2021-04-13
贵金属清除剂
企业产品介绍
青岛海粟新材料科技有限公司 2025-02-07
Au-DNA探针、金属离子快检试纸条及其制备方法和应用
本发明公开一种Au‑DNA探针、金属离子快检试纸条及其制备方法和应用,探针包括识别链和底物链杂交形成的杂交双链和金纳米颗粒,识别链包括DNAzyme链、延长链和端巯基,延长链与C DNA的序列互补,DNAzyme链具有金属离子识别结构,底物链具有金属离子切割位点,底物链一端修饰有端巯基,金纳米颗粒连接端巯基。试纸条的反应膜上喷涂有C DNA和捕获底物链的T DNA。使用基于AuNPs的红色为信号输出方式,实现对金属离子灵敏、快速的检测,且检测具有低检测限、宽线性响应范围和较好的选择性与稳定性,本发明制备简单、方便快捷并采用易得的原料合成,成本较低,可实现对Na<supgt;+</supgt;的快速检测,且小型便携,具有开发潜力和应用背景。
南京工业大学 2021-01-12
锂离子电池、钠离子电池
钱逸泰院士,江苏无锡人,无机化学家,中国科学院院士。1962 年毕业于山东大学化学系。1997 年当选为中国科学院院士。2005 年起为山东大学胶体与界面化学教育部重点实验室学术委员会主任。2008 年当选英国皇家化学会会士。主要研究方向包括:1、新型过渡金属氧化物,无机非金属等纳米材料制备;2、石墨烯复合材料的自组装制备及应用;3、新型纳米材料及复合纳米材料在新能源领域的应用,如锂离子电池、钠离子电池、超级电容器等。近年来,钱逸泰领衔的资源循环与清洁能源创新团队从事锂离子电池电极材料化学制备的研究,发展了纳米硅等电极材料的简单合成技术,并被全球著名期刊《Nature Materials》作为亮点研究报道。2020 年重要锂电成果有:Energy Storage Materials:MXene 骨架上非晶液态金属成核晶种实现各向同性的锂成核和生长助力无枝晶锂负极Adv. Energy Mater.:通过改变阳离子溶剂化鞘结构在水系电解液中形成固态电解质界面Energy Storage Materials:室温液态金属的界面钝化实现 5 V 锂金属电池在商业碳酸酯基电解液中的稳定循环ACS Nano:商用合金和 CO 2 制备的二维硅/碳助力柔性 Ti 3 C 2 Tx-MXene 基锂金属电池
山东大学 2021-04-13
离子泵
产品详细介绍VARIAN离子泵系品由多种离子泵、电源、选配件及附件组成,能够为所有超高真空应用提供完美的解决方案,极限压强可达10-11mbar,清洁、无油、无噪。能完美解决真空系统对工作压强、待抽气体的组成成分以及系统中超高真空获得设备的启动压强等的要求。Varian离子泵 系列产品包括 Diode(极型)、Noble Diode(惰性二极型)以及StarCell(专利的三极型)三种不同类型的离子泵,同时还提供包括Mimi Vac、Dual 和 Midi Vac 三种离子泵电源,用户可从中选择所需功率要求和接口标准的产品。具体的参数可以来电咨询。
北京东方晨景科技有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 102 103 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1