高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
中国科大在分布式量子精密测量方面取得重要进展
中国科学技术大学教授潘建伟及其同事陈宇翱、徐飞虎等利用多光子量子纠缠在国际上首次实现分布式量子相位估计的实验验证,这为将来构建基于量子网络的高精度量子传感奠定基础。该成果于11月30日在国际学术知名期刊《自然·光子学》上在线发表。 分布式传感是一种可用于同时执行远程空间多个节点上精密测量任务的重要手段,在日常生活、科学研究和工程等领域有着广泛的应用。例如,该项技术可用于桥梁、飞机等大型结构的应力场分布和温度场分布的有效监测。随着量子技术的不断发展,传感技术也迈进了量子化时代。量子网络作为量子信息和量子计算的重要组成,在执行各类远程多节点任务中起着重要作用。当对多个空间分布的参量进行测量时,分布式量子传感能够实现超越经典统计极限的测量精度。然而,分布式量子传感面对的一个重要问题是:如何选择并制备能够实现对多个参量最优的测量精度的量子纠缠态。研究表明,对于某类分布式的最大纠缠态,理论上能够达到最优测量精度,即海森堡极限。 研究团队设计了最优的测量方案,基于多光子量子纠缠,通过操纵六光子干涉仪,实验演示了多个独立的相移及其平均值测量。实验结果显示,利用分布式纠缠态进行测量,其精度可以超越经典传感器的理论极限。基于光子纠缠和相干性组合的方案,研究团队进一步实验演示了多个空间相移的线性组合测量(参数数量总个数达到21个),与仅利用粒子纠缠的方案对比,该组合式方案不仅能够增加可测量参数数量,还能提高测量精度。 该项工作成功实现了多参量分布式量子传感的原理性实验验证,评估了不同纠缠结构情况下的测量精度,验证了纠缠结构对测量精度的增强效果,扩展了资源利用率和可测量的参量数量,朝分布式量子传感的实际应用迈出了重要一步。《自然·光子学》杂志的审稿人对该工作给予高度评价,称赞这是一项“重要的里程碑工作”(constitutes a significant milestone)。
中国科学技术大学 2021-02-01
中国科大在分布式量子精密测量方面取得重要进展
项目成果/简介:中国科学技术大学教授潘建伟及其同事陈宇翱、徐飞虎等利用多光子量子纠缠在国际上首次实现分布式量子相位估计的实验验证,这为将来构建基于量子网络的高精度量子传感奠定基础。该成果于11月30日在国际学术知名期刊《自然·光子学》上在线发表。 分布式传感是一种可用于同时执行远程空间多个节点上精密测量任务的重要手段,在日常生活、科学研究和工程等领域有着广泛的应用。例如,该项技术可用于桥梁、飞机等大型结构的应力场分布和温度场分布的有效监测。随着量子技术的不断发展,传感技术也迈进了量子化时代。量子网络作为量子信息和量子计算的重要组成,在执行各类远程多节点任务中起着重要作用。当对多个空间分布的参量进行测量时,分布式量子传感能够实现超越经典统计极限的测量精度。然而,分布式量子传感面对的一个重要问题是:如何选择并制备能够实现对多个参量最优的测量精度的量子纠缠态。研究表明,对于某类分布式的最大纠缠态,理论上能够达到最优测量精度,即海森堡极限。 研究团队设计了最优的测量方案,基于多光子量子纠缠,通过操纵六光子干涉仪,实验演示了多个独立的相移及其平均值测量。实验结果显示,利用分布式纠缠态进行测量,其精度可以超越经典传感器的理论极限。基于光子纠缠和相干性组合的方案,研究团队进一步实验演示了多个空间相移的线性组合测量(参数数量总个数达到21个),与仅利用粒子纠缠的方案对比,该组合式方案不仅能够增加可测量参数数量,还能提高测量精度。 该项工作成功实现了多参量分布式量子传感的原理性实验验证,评估了不同纠缠结构情况下的测量精度,验证了纠缠结构对测量精度的增强效果,扩展了资源利用率和可测量的参量数量,朝分布式量子传感的实际应用迈出了重要一步。《自然·光子学》杂志的审稿人对该工作给予高度评价,称赞这是一项“重要的里程碑工作”(constitutes a significant milestone)。
中国科学技术大学 2021-04-11
船舶制造精密测量系统
船舶制造精度控制是造船工业的关键技术,对提高船舶质量,降低生产成本发挥着重要作用。日韩等世界造船强国已形成一套完整的管理体制,拥有完善的工艺制造流程,先进的高精度测量仪器和三维坐标测量与实物分析软件系统得到了广泛应用。我国的精度控制软件系统起步较晚,没有较为完善的产品,高精度全站仪的性能得不到充分发挥。引进的国外相关软件不但价格昂贵,而且功能存在不符合国内生产习惯的现象。本项目旨在研制船舶制造精密测量系统,结合高精度全站仪提升我国船舶制造精度控制水平。针对高技术、高附加值的船舶制造具有尺寸大、精度要求高的特点,研制船舶制造精密测量系统及精度控制解决方案。主要研究内容包括以下三个部分:(1) 针对船舶分段不规则摆放、构件外型复杂、尺寸大、内侧构件不易测量等实际情况,建立适用于测量大型船舶分段和构件的数学模型;(2) 通过嵌入式精密测量系统与高精度全站仪的集成应用,实现船舶分段和构件三维坐标数据的采集,为船舶制造提供船舶的三维计算与分析结果;(3) 建立船舶制造数据库、误差分析模型和精度控制方案,存储设计数据、实测数据和分析结果等,对船舶制造过程中加工、切割、装配和焊接等环节进行误差统计分析和精度控制,为设计和工艺方法的改进、精度指标的确定提供数据和理论基础。
南京工业大学 2021-04-13
船舶制造精密测量系统
本项目旨在研制船舶制造精密测量系统,结合高精度全站仪提升我国船舶制造精度控制水平,主要研究内容包括以下三个部分: (1) 针对船舶分段不规则摆放、构件外型复杂、尺寸大、内侧构件不易测量等实际情况,建立适用于测量大型船舶分段和构件的数学模型; (2) 通过嵌入式精密测量系统与高精度全站仪的集成应用,实现船舶分段和构件三维坐标数据的采集,为船舶制造提供船舶的三维计算与分析结果; (3) 建立船舶制造数据库、误差分析模型和精度控制方案,存储设计数据、实测数据和分
南京工业大学 2021-04-14
多维曲面激光精密测量系统
多维曲面激光精密测量系统包括基于激光位移精密传感器的测量机构和数据采集与分析软件系统。能够对直齿轮、斜齿轮、圆锥齿轮和弧齿圆柱齿轮以及叶片、蜗轮、蜗杆等复杂曲面零件进行非接触式快速测量;软件系统能够实现对复杂曲面零件模型任意截面数据的提取与测量路径自动编程,并且对测量数据进行各项误差分析。
扬州大学 2021-04-14
钢轨短波几何精密测量技术
一、项目分类 关键核心技术突破 二、成果简介 钢轨短波几何精密测量技术,是针对钢轨短波几何不平顺,特别是钢轨波浪形磨耗(简称波磨)的一种测量技术,用于钢轨5mm-3000mm的钢轨短波不平顺测量设备,测量精度可达2um。该技术核心为“一弦N点弦测法”专利技术,并已经产品化为“MCR钢轨短波不平顺精密测量仪”。不同于国外波磨仪产品的技术路线,该技术核心为一弦N点弦测法,适应于非接触式快速测量,具有抗振动干扰、自标定、自平衡等特点,使得测量设备可以轻量化,可以用于高速测量场景,极大提升了设备的便捷性。目前,国内应用的波磨测量设备均依赖于国外进口,价格昂贵。该技术的产品化打破国外产品的垄断地位,为我国铁路市场的波磨病害治理提供具有自主知识产权的钢轨精密测量设备。基于上述专利已完成钢轨短波不平顺精密测量仪的研制,钢轨短波不平顺精密测量仪弥补了我国短波不平顺测量设备的空白,测量精度、测量效率、稳定性、重复性、环境适应性已超出进口同类型产品性能。目前已经在我单位多条地铁线路进行应用,实际应用情况证明,该测量仪能科学高效完成线路钢轨表面短波不平顺测量,特别是对轨道三大薄弱环节(曲线,焊接头,道岔)的快速测量,节约养护维修的人力物力,且创造了显著的社会经效益。
西南交通大学 2022-07-26
基于精密测量技术的检测设备
西安交通大学 2021-04-10
光电探测量子芯片产业化
用于量子保密通信、近红外探测成像、高速量子光通信、激光雷达探测。 针对单光子探测需求,提取关键技术参数,通过多次半导体器件仿真优化,最终得到外延结构设计。结合 13 所 自主外延生长技术与精准的锌扩散方案,最终实现较为成功的 GM-APD 芯片。该芯片已经成功达到量子保密通信中单光子探测需求,并在安徽问天量子技术有限公司的产品中得到应用。 
中国科学技术大学 2021-04-14
精密塑料盘体高速旋转测量仪
精密塑料盘体是现代通信与特种材料技术所必须采用的重要部件之一,常用来卷储光导纤维与特种料带等。由于昂贵的光导纤维与特种料带极易被磨损和产生断裂,因而对其生产与储存的载体——精密塑料盘体有很高的质量要求。 精密塑料盘体在加工生产中要经过盘缘与柱芯分别压铸、连接部修整校位、整体组合、衬垫敷设等多道加工工序。由于对其几何要素的位置与尺寸精密度要求较高,因而必须对其整体成型后的容宽与双侧跳动进行逐件检测。目前,这种检测基本是采用手动方式进行的,在检测速度、检测效率、统计分析和数据存储上尚不能满足精密塑料盘体的大批量、高速度生产要求。这对于生产过程的实时监控、质量变化原因分析与加工设备的调整等非常不便。为在生产加工中实现产品出厂的零缺陷保证,应研制用于生产现场的精密塑料盘体高速旋转测量仪。 在国内,目前尚没有用于精密塑料盘体的高速旋转测量仪。   该测量仪的主要技术指标: 对容宽的检测:基长98mm,误差±0.02mm; 对双测跳动检测:基圆210mm,误差±0.02mm; 测量件不损伤塑料盘体表面;可自动显示与记录测量数据; 气动进退测量支承部件;发现超差件自动报警; 检测速度为每分钟6件;可根据要求打印测量数据和统计结果。
上海理工大学 2021-04-11
盘式制动调节器尺寸精密测量
盘式制动调节器是汽车刹车部位重要的零部件,盘式制动调节器的高度对汽车的制动性能着极为重要的影响,其尺寸的要求精度在 皿。受南京弹簧厂委托,研究团队利用视觉测量技术,于2018年10 月研发了盘式制动器尺寸的在线测量装置,已投入生产使用,该设备 检测精度在0. 02mm,是国内研发的关于该产品自动测量的第一款高精 密设备,解决了公司的急迫需求,赢得了国外客户的赞许,得到了公 司的大力信任。
南京工程学院 2021-01-12
1 2 3 4 5 6
  • ...
  • 90 91 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1