高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于过渡金属基化合物的高能量密度超级电容器研发
超级电容器是一种新型绿色储能器件,拥有比功率大、充放电效率高, 寿命长等优点,在低碳经济时代展现出巨大应用前景,已经被广泛应用于电 子产品、电动汽车、混合电动汽车、无线通讯设施、信号监控、太阳能及风 力发电等领域。开发具有高能量、高循环性和低成本的超级电容器是该领域 未来重要研究之一。电极材料作为超级电容器的核心组成部分,对其储能 性能有着至关重要的影响,而具有高理论容量、低价格的过渡金属基化合物 (Fe、Co、Ni)是实现高容量、低成本超级电容器首选的电极材料。以过渡金 属基化合物为主要研究对象,对其组分及结构进行了调控,通过储能性能测 试及储能机理分析,为开发高性能、低成本的活性电极材料提供实验依据。 这一研究的开展,给组装超高能量密度的超级电容器并使其从实验室走向我们 的日常生活带来了新的前景。 1.先进性及产业化前景:提高性能、降低成本一直以来都是超级电容器发展的 主旋律,其中能量密度低是超级电容器发展面临的主要问题,因此开发出具 有高能量、成本低的超级电容器迫在眉睫。就提高性能而言,超级电容器的 电极改进是重点,主要途径是通过提高电压窗口和提高电极材料的比电容。 目前针对超级电容器电极材料的研究主要集中在:(1)改进现有的电极材料; (2)开发新型电极材料;(3)改进生产工艺,实现低成本化。目前在全球范 围内达到工业化生产水平的超级电容器基本都是以双电层为储能机制的活性 碳基超级电容器,而以贋电容为储能机制的超级电容器尚处于实验室开发阶 段,因此超级电容器还有很大的发展空间。 2.对所在行业和关联产业发展和转型升级的影响:根据超级电容器的容量大小 和功率密度,可以将其用作后备电源、替换电源和主电源。当主电源发生故障 而不能正常使用时,超级电容器便起到后备补充作用,它具有寿命长、充放电快 和环境适应性强等优点。当用作替换电源时,主要应用于对环境变化有特殊要 求的场合,例如白天太阳能提供电源并对超级电容器充电,晩上则由超级电 容器提供电源。作为主电源时,主要利用超级电容的大功率密度,一般是一个或几个超级电容器通过一定的方式连接起来持续释放几毫秒至几秒的大电 流,放电之后,再由低功率的电源对其充电。 3.市场分析:根据IDTechEX数据统计,2014年超级电容器全球市场规模为11 亿美元,预计到2018年,超级电容器全球市场规模将达到32亿美元,年复合 增长率为31%,并预测将会以此速度预计到2018年,超级电容器全球市场规模 将达到32亿美元,年复合增长率为31%,并预测将会以此速度继续增长。我国 将“超级电容器关键材料的研究和制备技术"列入到《国家中长期科学和技 术发展纲要(2006-2020年)》,作为能源领域中的前沿技术之一。有数据显示, 2015年国内超电市场规模已经超过了 70亿元,因此,在这样的一个大背景下, 研究新材料以开发具有超高能量密度的超级电容器具有非常大的市场前景。
重庆大学 2021-04-11
借助原位环境电镜揭示金属催化剂真实活性表面的研究成果
南方科技大学材料科学与工程系副教授谷猛团队联合中科院大连化学物理研究所、上海高等研究院等,巧妙借助原位环境电镜,在真实反应条件下直接观测到NiAu双金属催化剂在二氧化碳加氢反应中的动态过程,揭示了该催化剂在反应中的真实活性表面,为认识催化过程提供了新的思路。该研究发表在《自然-催化》(Nature Catalysis )上。材料系科研助理韩韶波为文章共同第一作者,谷猛为文章共同通讯作者。 实验表明,在反应气氛和温度下,内核Ni原子会逐渐迁移至表面,与Au合金化;在降温停止反应时,表面Ni迁移回核心部分,重新形成Ni@Au壳型结构。原位红外和原位X射线吸收谱的结果也从宏观角度证实了上述观测结果。团队结合理论计算,提出了新的催化机理。该研究揭示了催化剂真实活性表面,展示了原位电镜在研究构效关系中的重要性,并且为研究金属催化提供启示。
南方科技大学 2021-04-11
一种基于激光冲击波技术定向超高速喷涂的方法及装置
(专利号:ZL 201510093120.5) 简介:本发明公开一种基于激光冲击波技术定向超高速喷涂的方法及装置,涉及零件加工再制造技术领域。该喷涂方法首先利用电极产生的高温电弧加热熔化涂层材料的喷涂丝成熔滴脱落,熔滴被雾化气体雾化成微滴流,然后由激光脉冲束辐照于微滴流表面上,表面一部分微滴吸收激光能量,瞬间气化和电离形成高压等离子体,高压等离子体继续吸收激光能量膨胀爆炸形成GPa量级的高压冲击波,高压冲击波驱动着微粒流高速喷射到工件表面形成涂层。喷涂装置包括激光发生器、导光分光系统、电弧制液系统、工件夹具系统、回收系统以及控制系统。本发明能够实现高速高效喷涂,涂层与基体的结合强度好,涂层的致密度高、空隙率低,具有较高抗热疲劳和机械疲劳的性能。
安徽工业大学 2021-04-11
一种振镜式激光扫描大幅面材料成形加工控制系统
本发明公开了一种振镜式激光扫描大幅面材料成形加工控制系 统,其包括上位机、激光扫描主控制器和多个激光扫描从控制器;激 光扫描主控制器和多个激光扫描从控制器基于 EtherCAT 总线冗余环 型拓扑结构连接,激光扫描主控制器作为 EtherCAT 通信主站,多个激 光扫描从控制器作为 EtherCAT 通信从站。上位机通过总线与激光扫描 主控制器双向通信,激光扫描从控制器解析激光扫描主控制器指令、 提供/采集各类信号,
华中科技大学 2021-04-14
一种激光焊接过程中焊缝内部孔洞的控制方法及控制装置
本发明公开了一种激光焊接过程中焊缝内部孔洞的控制方法, 在激光装置的激光头对工件进行深熔焊的过程中,利用吹气装置在熔 池上方吹出气流以形成局部负压,从而将匙孔内的蒸气吹走,保证匙 孔的通畅,使焊接过程中产生的气体逃逸出熔池内部而避免形成孔洞, 本发明能够有效地解决激光深熔焊过程中的孔洞问题,且适合多种材 料、不同板厚、不同接头形式的激光焊接,尤其对厚板、夹层板、表 面涂层板的孔洞控制有很好的效果。
华中科技大学 2021-04-14
一种具有高单模成品率的渐变脊波导分布反馈激光器
一种高单模成品率的分布反馈激光器,包括激光谐振腔、布拉 格光栅;布拉格光栅为啁啾光栅或者等效的啁啾光栅,并位于谐振腔 内,其等效折射率沿谐振腔腔长方向是变化的;该激光器的模式增益 沿谐振腔腔长方向变化;该激光器输出单纵模。本发明由于采用啁啾 光栅或者等效的啁啾光栅,同时使激光器的模式增益沿腔长方向变化, 并通过在激光器两端面分别镀高反膜和增透膜配合,能够提高激光器 在布拉格阻带指定的一边,即蓝边或者红边光激射的概率,
华中科技大学 2021-04-14
一种基于光纤激光器暗化维护的暗化漂白装置和方法
本发明公开了一种光子暗化漂白装置,以解决目前在掺镱光纤 激光运行过程中光子暗化现象的缺少干预的局面。本发明包括暗化漂 白光源及其驱动电源。本发明是在掺镱光纤激光器内部上增加一套暗 化漂白装置,因此不改变光纤激光器的主体结构,具有高的适用性。 本发明装置尤其适合于工作中的周期性的对光纤激光器暗化进行漂 白,促进了光纤激光器的使用过程功率的稳定性,减缓了激光器光子 暗化进程,提高了激光器的使用寿命。
华中科技大学 2021-04-14
一种亚稳态气体激光的共振增强横向光泵浦装置及方法
本发明公开了一种亚稳态气体激光的共振增强横向光泵浦装置 及方法。通过共振增强技术,可增大对泵浦光的吸收从而提高光光效 率和整个系统的电光效率。通过将泵浦激光和出射激光分离,可克服 使用偏振器件带来的激光提取功率的下降和相应的插入损耗,避免了 双色镜的使用,降低了对单个泵浦激光模块的功率和光束质量的要求。 该泵浦方案还可扩展至多路横向泵浦的本征激励及种子注入式的主振 荡功率放大器(Master-Oscillator-P
华中科技大学 2021-04-14
一种基于平凸柱面透镜的激光焊接拼缝测量系统及方法
本发明公开了一种基于平凸柱面透镜的激光焊接拼缝测量系统,包括光源、平凸柱面透镜、凸透镜、感光元件和数据采集单元,其中光源用于发出检测光照射至该拼缝并形成反射;平凸柱面透镜、凸透镜和感光元件的光轴相重合,并且该光轴与光源的光学中心线以及拼缝的方向向量均处于同一平面内;当照射至焊接拼缝的检测光形成反射后,反射光沿着光轴依次经过平凸柱面透镜和凸透镜,最后在感光元件上形成图像并由数据采集单元予以采集,相应获得反映拼缝特征的测量结果。本发明还公开了相应的测量方法。通过本发明,能够在拼缝宽度方向上执行几何细节的
华中科技大学 2021-04-14
一种采用多谱线比值法提高激光探针分析精确度的方法
本发明属于激光探针定量分析技术,具体为一种提高激光探针 分析精确度的方法,以利用多谱线比值法提高激光探针定量分析准确 度和精密度。该方法首先对被测元素和基体元素的多条谱线间的强度 比值进行优化,然后将优化后的一些强度比值作为定量分析模型的输 入值,对模型进行训练,使用训练后的分析模型实现对被测物中被测 元素的定量分析。该方法自动去除不合适的谱线比值,只留下那些能 很好地反映被测元素含量信息和等离子体状态信息的被测元素
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 99 100 101
  • ...
  • 114 115 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1