高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
NLRP3炎症小体活化和髓系细胞控制肿瘤化疗敏感性的关键机制
2020年5月4日,中国科学技术大学生医部、基础医学院、中科院天然免疫与慢性疾病重点实验室和合肥微尺度物质科学国家研究中心周荣斌、江维研究组,附属第一医院潘跃银研究组和复旦大学柳素玲研究组合作在NatureCellBiology上在线发表题为“Myeloid PTEN promotes chemotherapy-induced NLRP3 inflammasome activation and antitumor immunity”的长篇研究论文,发现髓系细胞中PTEN蛋白能够促进NLRP3炎症小体活化,并增强化疗反应性。 化疗是目前治疗肿瘤最常用的手段之一,但是一些肿瘤患者对化疗药物并不敏感。除了受肿瘤细胞自身因素的影响外,越来越多的研究表明免疫微环境对肿瘤的化疗效果同样具有重要作用。过去的研究表明蒽醌类化疗药物能够诱导肿瘤细胞发生免疫原性细胞死亡,释放大量免疫原性物质如HMGB1和ATP,诱导NLRP3炎症小体活化和IL-1β和IL-18等细胞因子产生,从而促进肿瘤微环境中免疫细胞浸润并提高化疗诱导的抗肿瘤免疫。尽管肿瘤微环境中NLRP3炎症小体活化对化疗效果的发挥至关重要,但是在肿瘤微环境中决定NLRP3炎症小体活化的因素还不清楚。 PTEN蛋白是机体中重要的肿瘤抑制子,具有脂质磷酸酶和蛋白磷酸酶双重磷脂酶活性。已有的研究表明肿瘤细胞中PTEN蛋白通过其脂质磷酸酶活性逆转PI3K-AKT-mTOR 信号活化,抑制细胞增殖和肿瘤生长。在肿瘤治疗过程中,肿瘤细胞中的 PTEN 蛋白缺失导致 PI3K-AKT 信号通路过度活化,引起肿瘤治疗抵抗。尽管肿瘤细胞中的PTEN蛋白在肿瘤发生发展和肿瘤治疗中的功能研究较为清楚,但是PTEN在免疫微环境中的作用和机制尚不清楚。 为了探究髓系细胞中的 PTEN 蛋白是否影响肿瘤的治疗效果,研究者首先对髓系细胞中PTEN条件性基因缺陷小鼠进行皮下荷瘤,并利用能够诱导肿瘤细胞发生免疫源性细胞死亡的化疗药物进行治疗。结果显示当PTEN缺陷后,化疗药物对肿瘤的治疗效果显著降低。对小鼠肿瘤组织和腹股沟淋巴结中抗肿瘤免疫相关指标进行检测,发现PTEN缺陷小鼠中CD8+T细胞浸润显著降低,IFN-γ的分泌也明显减少。与此同时,肿瘤免疫微环境中炎症小体活化相关指标caspase-1剪切,IL-1β和IL-18分泌也显著减少。这些结果表明PTEN可能通过促进免疫微环境中炎症小体活化提高机体抗肿瘤免疫。 接下来研究者在细胞水平探究PTEN对炎症小体活化的影响。通过利用shRNA敲低和PTEN缺陷细胞进行炎症小体活化实验,研究者发现PTEN能够特异性促进NLRP3炎症小体活化,而不影响AIM2和NLRC4炎症小体活化。机制上,PTEN能够直接结合NLRP3,通过其蛋白磷酸酶功能介导NLRP3酪氨酸32位点(鼠源为酪氨酸30位点)发生去磷酸化修饰,进而促进NLRP3炎症小体组装活化。此外,作者还构建了能够特异性识别NLRP3酪氨酸30位点磷酸化的抗体以及NLRP3酪氨酸30位点组成型磷酸化的knock-in小鼠Nlrp3Y30E/Y30E,进一步确定了PTEN通过诱导NLRP3酪氨酸32位点去磷酸化促进NLRP3炎症小体活化。 为了明确髓系细胞PTEN促进化疗诱导的抗肿瘤免疫依赖于NLRP3炎症小体。研究者在PTEN条件缺陷鼠中回补细胞因子IL-1β和IL-18,发现回补细胞因子后能够显著提高化疗药物对PTEN条件缺陷鼠的治疗作用,表明PTEN通过促进免疫微环境中NLRP3炎症小体活化提高机体抗肿瘤免疫。在肿瘤临床样本中,研究者也发现髓系细胞中的PTEN与肿瘤患者对化疗药物的敏感性呈现正相关关系。 总之,该研究创新性体现在:1)发现肿瘤抑制因子PTEN在NLRP3炎症小体活化中发挥关键作用;2)揭示髓系细胞PTEN可以通过控制NLRP3炎症小体活化从而决定化疗敏感性;3)提示髓系细胞PTEN的表达可以作为一种预测化疗敏感性的生物标记物。 中国科学技术大学生医部和基础医学院黄亿博士为该论文第一作者,周荣斌、江维、潘跃银和柳素玲教授为共同通讯作者。该项工作得到了复旦大学丁琛课题组、邵志敏课题组,安徽医科大学蔡永萍课题组,苏州系统医学研究所马瑜婷课题组和中科大张华凤课题组、金腾川课题组、王朝课题组和白丽课题组及科技部、基金委、中科院、安徽省和中国科学技术大学的大力支持。 原文链接:https://www.nature.com/articles/s41556-020-0510-3
中国科学技术大学 2021-04-11
稀散多金属采选冶废弃物减量化、资源化与污染控制及环境 管理研究
一、研发背景 我国是有色及稀散金属资源大国,产量更是在全球具有绝对控制地位。稀散有色金属矿的开发利用给我国带来巨大的经济效益,与此同时也带来了严重的环境重金属污染。稀散有色金属矿经开采、选、冶加工后,会遗留下大量的尾矿、冶炼渣和各种尘泥。从环保和安全上来说,稀散多金属采选冶废弃物是重大的污染源和危险源,控制固体废弃物污染特别是矿业固体废弃物成为中国环境保护领域的重要问题之一。 二、技术内容 (1)新型深部充填减量化技术。开发一种价格低廉、材料来源广泛且固化重金属效果优良的地下采矿胶结充填料,能够降低充填采矿成本,并可以安全处置危险废物;(2)尾矿库微生物原位成矿修复技术。利用微生物(硫酸盐还原菌、寡营养铁还原菌)控制环境中 Fe3+ 浓度、降低环境电位、降低环境中游离镉、锑等重金属离子,实现现役尾矿库的微生物生态修复。(3)五层覆盖强还原原位成矿修复技术。基于矿物学--生物地球化学协同作用,开发已闭库或无主尾矿库的重度污染区的五层(无污染客土层、膨润土密封层、有机质深度还原密封层、含高风险稀散多金属及砷和重金属尾矿生物法控制污染主反应层、原始尾矿层)覆盖强还原稳定成矿修复技术。 三、作用原理 针对我国含稀散多金属硫化矿采选冶废物易引起氧化淋溶、存在溃坝风险和对周边及重大流域构成的严重环境威胁等问题,首先研究采选冶废物处置环境风险评估方法,建立稀散多金属采选冶废物处理处置污染控制技术评估方法;利用冶炼废渣及尾矿库内堆存尾矿,研发新型膏体充填减量化、资源化技术;针对现役尾矿库,利用硫酸盐还原菌及寡营养铁还原菌研发尾矿微生物原位成矿修复技术;针对已闭库及无主尾矿库,基于矿物学--生物地球化学协同作用,研发重度污染区的五层覆盖强还原稳定原位成矿修复技术;组合应用上述技术,在典型稀散多金属采选冶集中区开展技术示范;最终形成“基于风险控制的稀散多金属采选冶废物减量化、资源化处理处置与污染控制方案和环境管理导则”,为我国稀散金属多金属污染防控和环境管理提供技术支撑。
北京科技大学 2021-04-13
基于高效聚光与金属网基波纹管相变蓄热的太阳能锅炉节能成套技术研发
成功开发出了在正常太阳能辐射强度条件下能满足全天供热的锅炉-太阳能耦合工作的技术,保证了系统连续稳定运行;开发出了高效太阳能集热阵列(增加基于涂料分解反射聚光效应的高效集热器技术);研发出一套具有一定生产能力和深入实验、改造能力的金属网基波纹管结构的相变蓄热样机;提高系统单位安装面积的集热量,保证全天候预热软水出水温度80-95℃并可产生不同温度蒸汽;开发出相应的锅炉结构、管线改造技术,精简锅炉结构;设备使用寿命20年。 首次将太阳能光热技术全天候昼夜应用于高能耗、高污染行业,例如:石化行业、皮革行业、印染行业;开发基于涂料分解反射的聚光技术及相关高效集热器技术高效太阳能集热装置,强化提高单位面积的产热量,适应工业化安装需求;将太阳能装置与锅炉耦合,不需要对厂区原来的设备进行大面积改装;使用自然对流+强制循环系统,满足部分行业(如石化行业)的生产要求;国内外首次开发就金属网基波纹管相变储热、换热装置,提高系统效率,改善太阳能的不稳定性,保证装置连续运作,符合大型工业的需求;可连续自动运行,节省人力,提高效率具有较好的经济性,前期投入可在5-8年内回收
南京工业大学 2021-01-12
一种类石墨烯的新颖二维半导体Ca3Sn2S7
石墨烯是材料科学领域的一颗迅速崛起的明星,开启了二维材料的大门。作为纳米光电子器件广泛使用的理想电极材料,石墨烯除了具有优异的弹性和刚度外,还具有最高的载流子迁移率(104-105 cm2 V-1 s-1)。然而,石墨烯作为一种典型的半金属材料,它的零带隙极大地限制了其在半导体工业的应用。自石墨烯被发现以来,它的零带隙一直是世界范围内最具挑战性的难题之一。  多年来,人们一直致力于解决这一关键问题,最主要的打开石墨烯带隙方法可以概括为下面两种。第一种是通过掺杂、吸附、衬底相互作用、外加电场、应变、建立二维异质结等方法直接打开石墨烯的带隙。不幸的是,在打开石墨烯带隙的同时,保持其具有超高载流子迁移率的线性电子色散的多种尝试,至今仍未成功。第二种方法是开辟新的路径,寻找新的具有超高载流子迁移率(线性色散)的二维材料,如二硫化钼、硅烯、锗烯和磷烯等,它们构成了新的二维材料家族。遗憾的是,迄今还没有发现任何具有类似石墨烯线性电子色散和超高载流子迁移率的二维半导体。 北京大学物理学院史俊杰教授及其研究团队注意到:钙钛矿材料具有多样的组成和结构,如ABX3(具有三个不同原子位置的三维结构)、A'2[An-1BnX3n+1] (二维Ruddlesden-Popper型结构)、A'[An-1BnX3n+1] (二维Dion-Jacobson型结构)、A'2An-1BnX3n+3(二维111型结构)和AnBnX3n+2(二维110型结构)等,为材料设计提供了一个理想和庞大的平台。此外,钙钛矿结构中阳(阴)离子价态的劈裂和置换,阳(阴)离子的混合等,为组分工程提供了更多的可能性,从而极大地调节了所设计的钙钛矿材料的电子结构(带隙和电子色散)及物理、化学性质,为寻找具有新奇性质的材料开辟了一条新的道路。图注:左图为二维Ca3Sn2S7钙钛矿结构示意图,中图为它的三维线性色散能带图(带隙0.5 eV),右图为它的光吸收系数,并与光伏明星材料MAPbI3及Si的光吸收系数作对比。 最近,他们在硫化物钙钛矿的研究中,意外发现了一种新奇的稳定且环境友好的二维钙钛矿半导体Ca3Sn2S7材料,它具有类似石墨烯的线性Dirac锥电子色散,直接的本征准粒子带隙0.5 eV,超小载流子有效质量0.04m0,室温下载流子迁移率高达6.7×104 cm2V-1s-1,光吸收系数高达105 cm-1(超越钙钛矿光伏明星材料MAPbI3), 从一个全新的角度实现了打开石墨烯带隙的梦想。该研究将会为二维钙钛矿材料的设计和研发提供新的思路,并进一步促进半导体产业的发展。
北京大学 2021-04-11
浦江创新论坛寻找“青年的声音”,邀青年科学家和创业者发表“3V”
浦江创新论坛致力于蓄水青年人才、发现青年先锋,为青年人提供更多展示机会,搭建快速成长平台。
上海市科学技术委员会 2022-04-01
一种3-苯磺酰类香豆素类化合物的合成方法
本发明提出一种3‑苯磺酰类香豆素类化合物的合成方法,属于有机合成领域,能够直接利用香豆素类化合物与苯亚磺酸钠类化合物为原料合成3‑苯磺酰类香豆素类化合物。该技术方案包括向反应瓶中分别加入香豆素类化合物和苯亚磺酸钠类化合物,在碘和二甲基亚砜作用下,于55℃‑70℃温度下反应8‑10小时;待反应结束后,进行色谱分离,得到3‑苯磺酰类香豆素类化合物。本发明能够应用于3‑苯磺酰类香豆素类化合物的合成中,该
青岛农业大学 2021-01-12
一种 g-C3N4/NiCo2S4 复合材料、制备方法及其应用
一种 g-C3N4/NiCo2S4 复合材料、制备方法及其应用。具体是将 g-C3N4 和 NiCo2S4 混合得到,该混合可以是固相混合,也可以是液相 混合,本发明得到的 g-C3N4/NiCo2S4 复合材料能极大的增加了提高材 料的稳定性,将复合电极作为超级电容器工作电极材料进行测试,在 大电流密度条件下仍能具有较高的比电容量、较好的倍率性能和循环 稳定性。
华中科技大学 2021-01-12
一种钾掺杂介孔g-C3N4光催化材料的制备方法及其应用
简介:本发明公开了一种钾掺杂介孔g‑C3N4光催化材料在降解有机染料废水中的应用,属于光催化材料技术领域。该光催化材料的制备包括如下步骤:将三聚氰胺和KI充分研磨后平铺于坩埚底部,将SBA‑15均匀的分散在三聚氰胺和KI混合物的上面,然后将坩埚加盖后置于马弗炉内进行煅烧,产物经处理后即得所述钾掺杂介孔g‑C3N4光催化材料。该光催化材料比表面积大使得反应活性位点增加,钾掺杂后可有效抑制光生电子和空穴的复合,表现出更优异的光催化性能。本发明钾掺杂介孔g‑C3N4光催化材料可降解有机染料废水,在60min能降解80%以上的目标降解物,显示了优异的光催化活性。
安徽工业大学 2021-04-13
一种手性的1-(3,5-二氯吡啶-4-基)-乙醇的合成方法
本发明公开了一种1-(3,5-二氯吡啶-4-基)-乙醇的不对称合成方法,包括以下步骤:(A)3,5-二氯吡啶(I)在胺基锂的作用下与乙醛反应生成(±)-1-(3,5-二氯吡啶-4-基)-乙醇(II);(B)(±)-1-(3,5-二氯吡啶-4-基)-乙醇(II)在氧化剂的作用下生成1-(3,5-二氯吡啶-4-基)-乙酮(III);(C)1-(3,5-二氯吡啶-4-基)-乙酮在手性配体存在下与硼烷试剂反应,制得单一光学异构体的1-(3,5-二氯吡啶-4-基)-乙醇(IV)。该法较传统手性柱分离(±)-1-(3,5-二氯吡啶-4-基)-乙醇相比,优点突出:(1)反应简单,易于操作,总收率高,光学纯度大于98%;(2)工业制备周期明显缩短,设备要求低;(3)制备成本低,是适合工业生产的方法。
四川大学 2017-12-28
一种负载型Ag-Pd/C3N4纳米催化剂催化甲酸脱氢的方法
(专利号:ZL 201510680510.2) 简介:本发明公开了一种负载型Ag‑Pd/C3N4纳米催化剂催化甲酸脱氢的方法,属于化学化工技术领域。本发明将制备好的负载型Ag‑Pd/C3N4纳米催化剂置于反应器中,将反应器置于油浴中升至一定温度,接着将甲酸和甲酸钠混合液加入反应器中进行反应,生成的氢气采用排水法收集。所述负载型Ag‑Pd/C3N4纳米催化剂采用Ag、Pd按照一定摩尔比配成溶液,将载体C3N4加入上述溶液中,向混合液中添加还原剂,经过滤、干燥后制得。与传统的负载型催化剂不同的是:根据本发明,调节催化剂中金属银、钯的含量及C3N4含量就可以制得用于甲酸脱氢制氢气的高活性、高选择性负载型Ag‑Pd/C3N4纳米催化剂。
安徽工业大学 2021-04-11
首页 上一页 1 2
  • ...
  • 151 152 153
  • ...
  • 156 157 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1