高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种新型磷酸钙生物活性陶瓷
本实用新型公开了一种磷酸钙生物活性陶瓷,所述包括多孔磷酸钙陶瓷基体和纳米改性层,所述纳米改性层为纳米晶磷酸钙。所述多孔磷酸钙陶瓷基体表面通过改性处理自组装形成一层纳米磷酸钙,从而使材料表面/界面具有较大的比表面积,利于吸附成骨相关蛋白和细胞,材料植入体内后能快速释放钙、磷离子,促进新骨形成,进而使材料具有更好的生物活性和骨诱导性,同时该陶瓷具有更好的力学性能。
四川大学 2016-10-20
以石膏为原料制备活性碳酸钙
成果简介以化学石膏为原料, 加入碳酸钙活化剂和碳酸氢铵研磨, 用水洗涤沉淀物后干燥, 得到粒径 0.2-5 微米活性碳酸钙产品, 滤液蒸发结晶后得到硫酸铵固体。成熟程度和所需建设条件已完成工业化生产小试。技术指标活性碳酸钙球形, 0.2-5 微米。市场分析和应用前景活性碳酸钙是 80 年代后期发展起来的一种新型超细固体材料, 作为无机填料现已广泛应用于橡胶、 塑料、 造纸、 涂料、 油墨等工业产品中。
安徽工业大学 2021-04-14
高出光效率LED芯片
近年来,半导体光源正以新型固体光源的角色逐步进入照明领域。由于半导体照明具有高效、节能、环保、使用寿命长、响应速度快、耐振动、易维护等显著优点,所以在国际上被公认为最有可能进入通用照明领域的新型固态冷光源。随着其价格的不断降低,发光亮度的不断提高,半导体光源在照明领域中展现了广泛的应用前景。业界普遍认为,半导体灯取代传统的白炽灯和荧光灯,是大势所趋。而半导体发光二极管(Light Emitting Diode , 简称LED)被认为是最有可能进入普通照明领域的一种绿色照明光源,按固体发光物理学原理,LED发光效率能近似100 % ,并具有工作电压低、耗电量小、发光效率高、响应时间极短、光色纯、抗冲击、性能稳定可靠及成本低等优点,因此被誉为21 世纪新光源,有望成为继白炽灯、荧光灯、高强度气体放电灯之后的第四代光源。虽然LED具有以上的很多优点,但是发光效率和使用寿命仍是制约其普及应用的主要因素。 目前国内大多致力于LED外部封装结构的研究,而公司里多采用进口芯片,如cree芯片,再在现有基础上进行外部封装结构和设计。而即便是散热好,寿命长,取光效率比较好的封装结构,国内所能达到的水平也就是刚刚超出100lm/w。主要原因在于其封装材料的选择和封装结构的不合理性,浪费了芯片的出射光,从而降低了取光效率。而国外LED不仅在外部封装结构,而且在芯片方向都明显优于国内水平,所以基本垄断国内LED的市场,尤其对于功率型白光LED的垄断相当严重。而这些高亮度半导体LED芯片生产技术掌握在以美国Cree和Lumileds、日本的Nichia和Toyoda Gosei,以及欧洲的Osram等为首的少数大公司手中。 现在功率型白光LED 的光效已提高到80~100lmPW,而真正能够取代白炽灯和荧光灯进入通用照明市场,其光效需要达到150lm/ W。这一方面要求在芯片的制作上不断提高LED 的量子效率,同时还要求在LED 的封装及灯具的设计制作过程中尽可能提高出光效率。现有的LED出光效率低的原因之一是,LED芯片的折射率较高,LED发出的光在出射芯片的时候,有相当一部分光被芯片与外界(环氧树脂)的界面反射。本产品是通过特殊镀膜方法,使LED芯片出光效率提高了10%。可以有效的增加LED的使用寿命,达到2万小时以上,而且可以使发光效率达到120lm/w到160lm/w。拥有这样长寿命和高出光效率的白光LED,必将引领整个照明市场,必将产生丰厚的利润,具有非常好的发展前景。
上海理工大学 2021-04-11
高效人工光捕获体系
近日,东南大学化学化工学院青年教师陈旭漫博士在国际顶级期刊《Angewandte Chemie(德国应用化学)》上发表题为“Efficient Near-Infrared Emissive Artificial Supramolecular Light-Harvesting System for Imaging in Golgi Apparatus”的学术论文。 光捕获过程作为将自然光进行捕获、能量转化并利用的步骤,是植物光合作用中第一个也是十分重要的过程。构筑人工光捕获体系对于光能的利用具有重要意义,但目前构筑具有高效人工光捕获体系仍存在很大挑战。 东南大学研究团队利用“杯芳烃诱导聚集”策略,设计合成两亲磺化杯芳烃和阳离子型萘基吡啶衍生物作为荧光给体在水溶液中自组装,并引入尼罗蓝作为荧光受体分子,成功构筑了近红外发射的超分子人工光捕获体系。 通过进一步研究,团队发现该体系在细胞内依然保持很高的光捕获效率和高度稳定性,同时证明了其对高尔基体染色的选择性。该研究对于人工超分子光捕获体系传感、成像、诊断等方面的研究有着重要的推动作用。论文第一作者为东南大学化学化工学院青年教师陈旭漫,东南大学为第一通讯单位。
东南大学 2021-04-11
植物照明补光灯
山东光因照明科技有限公司 2021-06-17
磁光克尔效应系统
产品详细介绍磁光效应系统是研究磁性薄膜、磁性微结构以及样品磁化强度和样品各向异性最理想的测量工具。是一种基于磁光效应原理设计的超高灵敏度磁强计.具有测量精度高、测量时间短等优点。可以产生平滑、稳定的受控磁场,并且磁场平滑过零。可以逐点测量也可以扫描测量,方便易懂的测量软件以及友好的交互界面为测量提供了有力保障。本套磁光效应系统是广大科研工作者的有利工具.磁光克尔系统功能和特点:测量灵敏度高,准确度高。非接触式测量,是一种无损测量。可以测量同一样品厚度不等的楔形磁性薄膜。可以将样品放到真空中原位测量。可以测量同一样品不同部位的磁化情况。
北京东方晨景科技有限公司 2021-08-23
高性能燃料电池
本项目不仅具有燃料电池系统集成技术,还具备包括催化剂、膜电极等的核心材料技术。产品可以应用于燃料电池汽车、固定式与便携式电源等。 燃料电池汽车因其具有零排放、效率高、燃料来源多元化、能源可再生等优势被认为是未来汽车工业可持续发展重要方向,是解决全球能源问题、环境污染问题、气候变化理想方案。
南京大学 2021-04-10
蓄电池管理系统
蓄电池管理系统是国家“863计划”电动汽车重大专项子课题的研究成果。蓄电池是制约电动汽车推广以及产业化的最严重的制约因素。主要原因在于: (1)蓄电池在制造过程中,由于制作工艺的差别,即使同一批次的电池,也不可避免的存在着差异,即容量上的差异。在充电过程中,容量小的电池电压上升比较快,当其它电池尚未充满时,该电池已经充满,继续充电将造成容量小的电池处于过充电状态。在放电过程中该电池经常处于过放状态,致使其寿命明显缩短,进而带来整组蓄电池寿命降低。 (2)蓄电池组在运用过程中,如果出现单只电池损坏而未能及时发现的情况,其它蓄电池的性能将受到严重影响,致使蓄电池组的寿命远远小于单体电池的寿命。因此必须对蓄电池组中单体电池可能存在的故障情况做出早期预测与报警。 (3)蓄电池的实际容量受到多种因素制约,不仅与制造工艺有关,而且与使用状况关系密切。实时监测蓄电池组的使用状况,动态监测蓄电池组的剩余电量,对于延长电池组寿命,优化电池组的使用,具有极其重要的意义。 系统主要功能: 1、单体电池故障早期预测和报警 管理系统为适应不同应用场合,采用集中式或者分布式测量单只电池的电压和温度,采用专家系统,通过单体端电压,温度、不同充放电电流下的电池电压变化率以及温度变化率对故障电池作出准确判断,同时对于落后电池作出早期预警,及时通知维护人员更换或者检修,从而延长电池组的使用寿命。 2、剩余容量(SOC)预测 在对蓄电池剩余容量有严格要求的场合,如电动汽车、混合动力汽车等,管理系统采用高精度、高采样频率的测量系统对电池组的充放电电流进行数字积分,同时针对不同电池,采用不同的方法进行补偿,满足SOC预测精度的要求。如对铅酸电池,在静止一段时间后,利用端电压进行修正,而针对镍氢电池,则利用端电压、温度、自放电进行补偿,从而获得较高的SOC预测精度。 3、远程监控接口和数据记录功能 系统带有RS-232通讯接口,上位PC机可以利用监控软件实现远程实时监控、通过RS-485和CAN通信接口,系统可以和其它设备进行通讯。内置大容量EEPROM,实时记录单体电池数据,便于事后分析电池状况。 4、高可靠、高精度的电压检测电路 系统采用精密测量电路,分时采集每节电池的单体电压,有效地克服了用电设备尤其是高频开关器件引起的电磁骚扰,电压测量精度优于1‰,系统采用高速开关器件,既克服了继电器方案的慢速以及由于粘连有可能引起的短路问题。系统采用独特的预采样技术,即使电池组断路或者反接,也可以有效地保证检测电路的安全性。 5、高可靠性 系统在软件和硬件设计中采取了包括多项抗干扰措施以及冗余措施,同时系统有较完善的自检功能,提高系统的可靠性。
北京交通大学 2021-04-13
锂离子电池材料
本发明涉及一种锂离子电池正极材料原位碳包覆硼酸锰锂碳复合材料,是 将锂源、锰源、硼源和碳源按比例在分散溶剂中研磨混合均匀,烘干得粉体,再 于管式炉中将煅烧得到六方或单斜相的硼酸锰锂与碳的复合材料。将所得产品 制备成锂离子电池极片组装成电池,有较高的放电容量和良好的循环稳定性。 本发明采用固相方法,耗能少,可批量工业化生产,已申报国家发明专利。
山东大学 2021-04-13
绿色二次电池
吴锋是我国绿色二次电池(二次电池: 可充电电池)与相关材料领域的学科带头人之一,长期从事新型二次电池与相关能源材料的研究开发,率先提出采用轻元素、多电子、多离子反应体系,实现电池能量密度跨越式提升的学术思想,研发出高比能二次电池新体系与关键材料,得到国际同行的高度评价,为我国新能源材料和新型二次电池的研发和产业化做出了重要贡献。作为第一完成人获国家技术发明二等奖、国家科技进步二等奖各 1 项,省部级科技一等奖多项;还获得何梁何利科学与技术进步奖和四项国际奖。国际欧亚科学院院士,亚太材料科学院院士,被美国麻省大学波士顿分校授予荣誉科学博士学位。
北京理工大学 2021-04-13
首页 上一页 1 2
  • ...
  • 31 32 33
  • ...
  • 117 118 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1