高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
用于肿瘤磁热协同治疗的铁磁响应性载药胶束
化学与化工学院陆杨研究员课题组与中国科学技术大学俞书宏院士团队以及华南理工大学杨显珠教授课题组合作,以具有粘流态内核的mPEG-b-PHEP胶束作为纳米载体,包载磁性纳米立方体和具有肿瘤杀伤效果的中成药有效成分大黄素,实现恶性肿瘤的核磁共振造影成像(MRI)引导的磁热-化疗联合治疗。该研究提供了一种有效增强磁热治疗效果的方案,相关成果以“Ferrimagnetic mPEG-b-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy”为题发表在《国家科学评论》(National Science Review 2020, 7, 723-736)期刊上,论文的共同第一作者是化学与化工学院博士生宋永红和华南理工大学博士生李冬冬。磁热疗是指通过将磁性介质递送到目标病灶区域,在交变磁场中磁性介质产生的局部高热可以迅速杀死肿瘤细胞。由于磁热疗具备非侵入性以及无治疗穿透深度限制等优势,已经在深层肿瘤的临床治疗展现出潜力。但是临床中使用的磁性材料热转换效率低,为达到足够的肿瘤杀伤效果需要高剂量的磁性介质。此外,基于磁性纳米材料的磁致发热的加热速度一般较慢,限制了基于磁热响应的药物释放。针对上述难题,该科研团队制备的铁磁性纳米胶束的饱和磁化强度是目前商业化造影剂的2倍。在交变磁场的作用下,该铁磁性纳米胶束能够产生高热,其热转化效率远高于临床上使用的磁性纳米材料。同时,在磁热刺激下,化疗药物大黄素可以从胶束的粘流态PHEP内核迅速释放,其释放速度显著优于传统的聚乳酸为内核的胶束(非粘流态)。因此,在外磁场的引导下,该磁性纳米载体能够高效地靶向到肿瘤部位,促进肿瘤细胞的摄取;进而在交变磁场的刺激下,该磁性纳米胶束能够通过磁热与化疗协同,在极低的剂量即可显著杀伤肿瘤细胞。铁磁性载药胶束的制备及其磁热疗与化疗协同的示意图该研究工作得到了国家自然科学基金、国家重点基础研究发展计划、广东省生物医学工程重点实验室开放基金、中央高校基本科研业务费专项资金、安徽省自然科学基金、合肥大科学中心卓越用户基金等项目的资助。论文链接:https://academic.oup.com/nsr/article/7/4/723/5708950
合肥工业大学 2021-04-11
分布式电驱动线控底盘控制系统
成果介绍针对新能源汽车双驱/四驱特征,提出了分布式电驱动底盘智能控制架构,建立智能化、模块化、网络化的底盘标准体系。技术创新点及参数发明了轮边驱动转向与前桥转向机构,后轮主动转向结构(发明专利)。四轮独立驱动电动汽车节能转矩优化分配控制策略,过驱动电驱动系统容错控制策略市场前景1、与整车厂、行业头部供应商联合开发。2、为整车厂、供应商厂家做技术服务。实施条件该团队的控制系统目前是独立的VCU与整车CAN通讯,后续合作可以接入成熟的ESP/VCU/BCM集成ECU内部,也可以和整车厂研发部门合作开发整车控制器。
东南大学 2021-04-11
一种电涡流三维减振装置
本发明提供一种电涡流三维减振装置,该减振装置包括箱体、连接螺孔A、转轴、扭力弹簧、外层球体、中层球体、内层球体、附加质量块A、附加质量块B、连接螺孔B、内层球体扇叶、内层球体底座、中层球体扇叶、中层球体底座、外层球体扇叶、外层球体底座。当结构发生振动时,首先由附加质量块、扭力弹簧和各个球体组成的TMD阻尼器进行能量转移,减小结构振动;其次,在TMD阻尼器工作过程中,由导体与永磁体相对运动产生的电涡流阻尼来耗散能量。该装置利用球体嵌套,实现附加质量块的三维运动;通过设置不同的球体材料,利用电涡流阻尼进行能量耗散,实现多维减振。通过调整扭力弹簧刚度以及附加质量块质量,可对减振装置的使用频率范围进行调节。
东南大学 2021-04-11
一种电涡流摩擦摆减隔震支座
本发明公开了一种电涡流摩擦摆减隔震支座,该减隔震支座包括上支座板(1)、铰结滑块(2)、球面滑板(3)、下支座板(4)、永磁铁(5)、铜板(6)、竖向减震弹簧(7)、限位板(8)、减震层(9)、防尘圈(10)、螺栓孔(11)、滑块容腔(12)、摩擦垫(13)、耗能垫(14);所述的下支座板(4)的中部设有一个圆形盲孔,在该盲孔的底部自下至上依次设有竖向减震弹簧(7)、球面滑板3、摩擦垫(13)、铰结滑块(2),上支座板(1)中部的滑块容腔(12)与铰结滑块(2)相吻合,在上支座板(1)下表面的滑块容腔(12)外周设置有永磁铁(5),相邻永磁铁(5)的磁极相反。本发明采用电涡流减震技术与新型磁性橡胶材料减震层提高摩擦摆隔震支座的耗能能力,提高耐久性,实现结构在地震、台风等极端荷载作用下的结构三维减隔震。
东南大学 2021-04-11
单、三相电能表反窃电装置
一、项目背景 我院反窃电技术已获得专利权,达到国内领先水平。该技术适用于几乎全部现行机械走字表(DD28、DD862型等)几大部分电子电能表,不增加电表负荷,不影响电表走字,窃电量达到几十瓦即自动断电。二、项目简介 1.TS4—03A兼有超限自断、延时复原功能的反窃电装置(这是根据湖北省电力局用电处要求研制的加装于电表外的最新产品,放弃防摘钩窃电功能)。其特殊功能是:①对短路或起动时超表限不予理会;②对稳态超限或窃电会短延时后自断供电;③如不再超限或窃电,经长延时(可按协议整定:几分钟——几十分钟)后自行复原,否则经自动检测口再次自断。 2.TS4—03B兼有超限自断功能的反窃电装置。其主要功能同上,但加装于表内(有防摘钩窃电功能)。 3.TS3—03高灵敏自断记忆型反窃电装置。仅有反四种窃电手法功能,自断后需分合总电源开关一次才能复原。 4.TS2三相电能表反窃电装置。其功能是:①防断电压线圈;②防反接1~2个电流互感器;③防任短1~3个电流互感器二次绕组开头。
武汉工程大学 2021-04-11
一种认知无线电频谱感知方法
本发明通过对非参量CUSUM检测算法进一步改进并应用到频谱检测中,能够在没有信号先验知识与信号出现时刻随机的条件下,克服现有快速检测方法的不足,更加快速低地检测到信号。并能够根据检测情况动态调整偏移量,使得检测延时进一步缩减。
电子科技大学 2021-04-10
苯胺的固相电致化学发光检测方法
本发明是一种苯胺的固相电致化学发光检测方法,具体方法包括:1)光学复合纳米纤维Ru-AuNPs-PA6的制备;2)固相电致化学发光传感系统构建与优化;3)苯胺定量检测。经静电纺丝制备电致化学发光活性物联吡啶钌掺杂的纳米金胶/尼龙6光学复合纳米纤维Ru-AuNPs-PA6,利用Ru-AuNPs-PA6构建固相电致化学发光传感系统并进行相关参数优化,应用该传感系统定量检测苯胺。本发明建立具有高灵敏度、高稳定性、宽线性范围、低检出限及传感系统可重复利用等特点的苯胺的固相电致化学发光检测方法。
东南大学 2021-04-13
多功能多用途全固态电致变色器件
电致变色器件是一种纳米多层膜功能器件。它是一种通过低电压(1-5V)、无电流、零能耗驱动的多功能变色器件。它可以根据需求智能化地调节可见光透射率和反射率以及红外光的发射率,从而在在智能化高效节能窗、航天器表面热控、武器装备隐身、汽车无眩光后视镜等领域具有广阔的应用前景。项目组自主研究开发出了完全自主知识产权的两种新一代全固态电致变色器件:全无机薄膜型和无机/有机组合型电致变色器件。 研究了电致变色器件在三个方面的应用特性:作为智能化高效节能窗对于太阳光透过率的调节作用;作为卫星表面智能热控器件其表面红外发射率的调控特性和太阳能光谱波段的反射率调控特性;作为多频谱隐身器件在可见光和红外迷彩以及红外特征抑制方面的色彩和红外发射率调制。 自主开发了高性能的无机固态离子导体薄膜和有机离子导电胶两种全固态电致变色器件中的核心技术。研发了全固态电致变色器件的专用镀膜制备技术和装置。获得国家发明专利4项。发表学术性研究论文30多篇。
北京航空航天大学 2021-04-13
分布式电驱动线控底盘控制系统
针对新能源汽车双驱/四驱特征,提出了分布式电驱动底盘智能控制架构,建立智能化、模块化、网络化的底盘标准体系。
东南大学 2021-04-13
新型Ag-MAX电接触材料的制备与应用
研制出了多种具有自主知识产权的Ag-MAX电接触材料,具有优异的力学性能、电学性能、热学性能及耐电弧侵蚀性能,具体研究成果包括:(1)新型Ag-MAX电接触材料开发:制备了高纯Ti3AlC2,Ti3SiC2,Ti2SnC和Ti2AlC等MAX相粉末材料,研制了Ag-MAX电触头复合材料,在400V、100A条件下(GB14048.4-2010)承受6000次电弧侵蚀后,质量损失约为5[[[[[%]]]]](与铜基座一体),样品仍然保持完整性,综合性能与商用Ag-CdO相当、优于Ag-C产品;(2)Ag-MAX电接触材料制备技术研究:研究了无压烧结和放电等离子烧结(SPS)制备Ag-MAX电触头复合材料,利用等通道转角挤压优化制备了Ag-MAX复合材料,通过MAX相表面包覆碳层的工艺调控Ag/MAX界面反应与结合,最终改善了材料致密度、微观组织、力学性能及耐电弧侵蚀性能,最佳条件下制备的样品在承受6000次电弧侵蚀后质量损失小于3[[[[[%]]]]];(3)Ag与MAX相高温润湿性研究:研究了Ag与Ti3AlC2、Ti3SiC2等MAX相块体材料的高温润湿行为,发现二者具有反应/非反应性两种不同润湿性,同时通过导电、导热和耐电弧侵蚀等性能表征,结果表明非反应性润湿体系具有更加优良的耐电弧侵蚀性能,对于Ag-MAX的体系开发与制备技术具有重要指导价值。主要创新点:1、研制了新型无Cd节约贵金属Ag的Ag-MAX电接触材料体系;2、优化制备了具有MAX相组织细化、定向排布特点的Ag-MAX电接触材料;3、研究了Ag与MAX的高温润湿行为,发现非反应性润湿的Ag-MAX体系综合性能更优。应用领域:预期本项目开发制备的Ag-MAX电接触材料,在航天航空、高速列车、电动汽车、智能电网、智能电器等行业的低压电接触器件(如电路开关、接触器、继电器等)中具有广阔市场前景。
东南大学 2021-04-13
首页 上一页 1 2
  • ...
  • 25 26 27
  • ...
  • 49 50 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1