高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
酸催化生产生物质炭技术简介
人类在发展过程中目前面临能源危机和环境污染双重压力。在能源消费方面,目前世界能源消耗91%的是一次性矿物燃料能源,但矿物燃料是有限的,不可能成为人类的永久性能源。因此寻找可替代化石能源的新能源是人类可持续发展的必由之路。 据估计,全世界每年由光合作用而固定的碳达2×1011 吨,含能量达3×1018 千焦,可开发的能源约相当于全世界每年耗能量的10 倍;生成的可利用干生物质约为1700 亿吨,而目前将其作为能源来利用的仅为13 亿吨,约占其总产量的0.76%,生物质资源开发利用潜力巨大。据测算,我国拥有的生物质能资源为50 亿吨左右,是我国目前总能耗的4 倍左右[5]。生物质资源虽然丰富,但由于保存和转化的技术落后导致生物质资源浪费严重,如秸秆等农业废弃物在田间焚烧,林业产品加工产生的木屑、锯末等被直接丢弃,食品加工的壳、皮等被当作垃圾填埋,这不仅污染了环境,还造成了生物质资源的巨大浪费 利用生物质制备炭材料,在能源领域利用可以直接作为燃料使用,可以避免生物质原料本身能量密度低、体积庞大难于运输等弊端,同时相对于燃煤可以减少硫排放,从而减少对环境的污染,但目前制造成本高,只有在特定的场合才使用,目前生物质炭在能源方面主要作为高端的燃料电池正极材料。另一方面生物质炭本身的多孔性致使它具有巨大的比表面积、发达的孔隙结构以及较好的化学稳定性和机械强度,在环保领域对重金属良好的吸附性能,因此对重金属废水处理及土壤恢复与改良具有巨大的应用潜力[8-14]。 由于传统工艺制造活性炭成本高,因此限制了其应用范围。如何最大限度降低制造成本是科研工作必须努力的方向。 生物质炭的制备方法主要分为:热分解法,微波炭化法,水热炭化法。热分解炭化法是目前制备生物质炭的主要方法,热分解制备生物质炭是在隔绝空气条件下生物质的高温裂解成炭,一般需要炭化与活化两个过程且二者可分步或同步进行。首先炭化过程是在300 –1000 0C下使生物质中分子链中C-O、C-C键断裂成炭,随着温度的升高, 生物质炭的产量降低, 含碳量逐渐增加。活化的目的是利用气体或化学物质改变炭化料的内部结构, 扩大孔体积, 增加活性炭的吸附性能。物理活化采用如水蒸气、空气、CO2进行活化;化学活化则采用化学物质如NaOH,ZnCl2,KOH, K2CO3等在600~11000C下活化,得到活性生物质炭产品。热分解法的缺点在于反应时间长,反应耗能大,传热效率低和反应原料加热不均匀等。微波炭化法则是通过被加热体内部偶极分子的高频往复运动,使分子间相互碰撞产生大量摩擦热量,继而使物料内外部同时快速均匀升温从而达到裂解及炭化的目的。微波加热具有操作简单、升温速率快、反应效率高、可选择性均匀加热等优点。生物质通过微波炭化处理其活性炭得率较高(一般达到40%左右)且表面积大。但微波炭化的不足在于物料的反应温度不能精确控制,过量的微波辐射将对人体健康有损害且工业化放大过程比较困难。水热炭化法是在一定温度(一般200 ℃)和压强(下将水热反应釜内的生物质( 碳水化合物、有机分子和废弃生物质等) 、催化剂和水进行加热,实现对生物质炭化的过程。水热炭化一般制得的生物质表面积小一般500m2/g以下,同时反应时间长,因此生产成本较高。 总之制备生物质炭材料具有丰富的原料来源,同时在能源及环境方面具有广阔的应用前景,尤其在重金属污染治理及土壤恢复及改良前景更为广阔。但目前生物质转化为炭流程长,分解温度高,造成生产成本高而致使生物质的利用率低。如何更高效、成本更低廉实现生物质的炭转化,无论对于人类能源结构优化及环境保护均有十分重要的现实意义。 本项目提出了一种酸催化裂解炭化生物质原料的方法,采用酸催化直接将生物质分解及炭化,并在低温下(2000C左右)加速炭化及活化(6000C以下) 过程,吸收炭化及活化过程蒸发的酸及液态有机物,酸进行循环利用,实现生物质炭材料绿色制备。由此可以制备出生物质炭材料比表面在1000m2/g以上,得率达到50%以上,从而降低生物质炭的制造成本,拓宽其应用范围。二.技术路线酸催化生产技术路线见下图,生物质粉碎后,采用一定酸浸湿润,干燥后进行炭化及活化,控制在4000C下炭化完全冷却,炭化活化过程进行酸回收并返回使用,炭化完全后冷却,加粘结剂压块便得到生物质炭。  图1 酸催化制备生物质炭工艺流程三.技术开发内容及指标技术开发内容生物质原料的筛选及酸种类的筛选温度、时间工艺参数的优化;粘结剂的选择与添加工艺确定日处理1吨中试放大设备选择与设计;技术指标生物质炭得率大于50%;生物质炭的碳含量高于80%;生物质炭燃烧后的灰分小于5%;生物质炭材料比表面在1000m2/g以上。四.经济效益初步分析生物质炭售价按3000元/吨计算,原材料及处理成本约1500元/吨;按年生产1万吨计算,年效益为=(3000-1500)x10000=1500万元。 本项目作为生物质炭新工艺相对于传统工艺,大幅度提高了生物质炭的转化效率及降低了生产成本,因此经济效益非常显著,如果作为活性炭使用效益更加显著。同时具有很好的推广前景。
清华大学 2021-04-13
一种铅液流电池及其电解槽
本发明公开了一种铅液流电池及其电解槽。该铅液流电池包括电解槽、循环装置、正极板、负极板以及储液罐;所述电解槽包括正极插槽、负极插槽以及电解液腔,所述正极插槽以及负极插槽平行设置,且在垂直方向通过电解液腔连通;所述正极板以及所述负极板分别通过所述正极插槽以及负极插槽与所述电解槽固定;所述电解槽的侧面设置有进水口和出水口,所述进水口和出水口在水平方向与电解液腔连通;所述电解液腔以及所述储液罐中装有电解液,所述循环装置连接所述储液罐以及所述电解槽的进水口,同时连接所述电解槽的出水口以及所述储液罐。该铅液流
华中科技大学 2021-04-14
无铅回流焊生产线特价团购
产品详细介绍特价团购!SMT生产线:台式无铅回流焊机QS-5128套餐,12件全网最低价2800元!超值!回流焊抽屉面积220×280mmQS-5128套餐(12件)产品明细如下:锡膏搅拌刀一把Sn63Pb37有铅焊锡膏500g一瓶手动丝印台QS-2430一台回流焊QS-5128一台SMT刮刀一把SMT激光钢网一张手动贴片机QS-2008两套高温板一张五槽料架一个三槽料架一个无尘纸一包活动时间:2011年9月18日—2011年10月18日SMT研发、小批量生产单位,不容错过的好机会!
深圳市勤思科技有限公司 2021-08-23
新型高炉陶瓷杯材料——塑性相结合刚玉复合砖
北京科技大学材料科学与工程学院与巩义市中原耐火材料有限公司等单位合作采用最新科技自主研制开发的塑性相结合刚玉复合砖是一种最新型的高技术的高炉炉缸用陶瓷杯耐火材料,它是采用金属与非金属结合在一起的复合材料,优于广泛使用的Sialon-Al2O3制品。在原刚玉碳化硅复合砖中添加金属塑性相研制而成,砖中塑性相与陶瓷基质复合,提高了材料的韧性;活泼的金属相在高炉气氛中可以原位生成氮化物、氧氮化物及其复合物,大大提高了耐火材料的强度与抗渣、铁侵蚀性能。金属塑性相结合刚玉复合材料的具体特点如下:1)具有优良的物理及力学性能和很高的抗铁水渗透和冲刷的能力;2)材料具有良好的抗热应力的能力;3)制品具有很高的抗渣、铁及碱的能力,材料的抗铁水侵蚀指数为0%,抗炉渣侵蚀指数为8.44%,抗碱侵蚀评价达"优Ⅱ";4)具有自修复、自生成抗渣铁侵蚀层的材料。具体指标为,体积密度:3.15g/cm3,常温耐压强度: 132MPa,高温抗折强度:17.8MPa(1400℃×30min),抗渣侵指数:8.44%,抗铁侵指数:0%,抗碱侵评价:优(U)。经权威机构查询,该项技术属国内外首创,生产的产品达到国外相似产品的领先水平。该产品荣获河南省科技进步二等奖。
北京科技大学 2021-04-11
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了 Mg 纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的 Mg 纳米线。结果表明,改变载气流速、传输温度和沉积基底,可以控制 Mg 纳米 10线的长度和直径。测试结果显示,Mg 纳米线降低了脱附能垒,改善了热力学和动力学性能。实验结果显示,直径为 30-50nm 的 Mg 纳米线具有良好的可逆储放氢性能。 研究成果发表在 J. Am. Chem. Soc.,J. Phys. Chem. C,J. Alloys Compds 等期刊上,授权发明专利 2 项。
南开大学 2021-02-01
一种有机/无机纳米复合注浆材料及其制备方法
本成果为一种有机/无机纳米复合注浆材料及其制备方法,复合材料包括A、B两组分,其中A组分含有硅酸盐水溶液、纳米增韧改性剂、催化剂、泡沫稳定剂等,B组分含有有机多异氰酸酯、聚有机硅氧烷;本发明一方面解决了水对有机聚氨酯注浆材料的影响,另一方面解决了廉价无机硅酸盐的引入对固化后注浆材料的强度的影响,得到的有机/无机纳米复合注浆材料固化后具有高的抗压强度与难燃特性,为矿用加固材料的安全性提供保障。 PU纳米复合材料注浆成型样品(压缩测试前后)的实物照片
山东科技大学 2021-04-22
高性能复合型髋关节股骨假体材料及产品
研发阶段/n目前国内生产使用的主要是金属关节,虽然其价格低廉,但仍存在断裂、腐蚀、股骨头磨损等问题,进口人工关节价格昂贵。高纯氧化铝生物陶瓷适用于矫形关节假体部件的替代材料及制品,是一种生物相容性好、耐腐蚀及耐磨损的生物惰性材料。氧化铝陶瓷与金属复合的人工关节,结合了陶瓷生物相容性好、耐磨及金属抗折强度高、韧性好的优点,开发生物陶瓷与金属复合及配伍的人工髋关节,能改变目前国内无生物陶瓷人工关节生产的局面,提高我国人工关节产品的档次,参与国外产品的竞争,为我国髋关节患者提供高质量、价廉的人工髋关节产品
武汉理工大学 2021-01-12
多孔矿物纤维/ 植物纤维复合涂布空气净化材料
目前用于空气过滤的净化材料,主要以丙纶、涤纶纤维无纺布为主,其微观结构是以直径为50~100nm 、长 10~20µm 的纤维组成多孔的纤维薄膜。对空气中悬浮颗粒(包含 PM2.5)的过滤净化主要是通过多层纤维进行阻隔,存在着过滤性能与透气性相矛盾的问题,且无法有效解决。本项目采 用涂装技术将多孔矿物材料、矿物纤维材料与 ePTFE 纤维进行了复合,在多孔纤维的结点上担载了一定量多孔矿物或矿物纤维作为吸附活性中心,制备出具有吸附功能的纤维过滤材料,可实现对微细、 超微细颗粒过滤的同时产生吸附作用,这样即使存在较大的孔隙也能产生良好的净化作用,可有效解 决过滤性能与透气性相矛盾的问题。经过检测,本项目所制备的样品对空气中微细、超微细颗粒(以PM2.5 为例)具有很强的去除功能,且透气性良好。
北京工业大学 2021-04-13
异质复合结构对n型BiAgSeS材料热电性能的显著强化
 在可再生能源日益短缺及温室效应日趋恶劣的严峻形势下,Seebeck效应作为一种新的能源转化方式,可以有效地将日常生活及工业生产废热和不能被太阳能电池有效吸收的红外波段转化为亟需的电能,故而引起了科研工作者们的广泛关注。衡量热电材料能量转化效率的最重要的指标是其品质因子ZT(=S2σT/κ),如何提高材料的品质因子是热电科研工作者们普遍关注的问题。     由于本征的纳米析出相以及价键非简谐性(bond anharmonicity)的存在, BiAgSeS具有非常低的本征热导率κ;然而,因其过低的载流子迁移率极大地限制了其功率因子S2σ。何佳清教授课题组巧妙地将在二维薄膜中广泛运用的调制掺杂(modulation doping)技术推广到三维块体BiAgSeS材料中,使用具有不同载流子浓度的异质晶粒构建三维复合结构,从而极大地提升了该材料中的载流子迁移率,使得功率因子S2σ相对于均匀掺杂的对照样品提升了约87%,进而显著地提升了BiAgSeS材料的热电转化效率。文章结合了透射电子显微术和理论计算对在n型BiAgSeS三维块体复合材料中运用调制掺杂改进载流子迁移率的物理机制做了深入的探讨;该工作对调制掺杂技术在三维块体热电材料中的广泛运用颇具启发意义。
南方科技大学 2021-04-13
水泥基渗透性抗裂防水复合修复材料制备技术
本发明公开了一种水泥基渗透性抗裂防水复合修复材料及其制备方法,本发明水泥基渗透性抗裂防水复合修复材料由以下质量分数的祖坟组成:硅酸盐水泥熟料20~40%、粉煤灰3~20%、石膏2~10%、高铝水泥2~10%、硅酸钠1~4%、萘系高效减水剂0.1~1.5%、碳酸钠0.1~2.0%、整形石英砂40~70%、聚丙烯短纤维0.1~3.0%和羧甲基纤维素钠0.05~1.0%;本发明材料性能优良、无毒无污染且具有粘结牢固、渗透深度好、防水抗渗效果和抗裂效果奇佳等特点,同时生产成本低廉、制备工艺和施工方法简单、使
天津城建大学 2021-01-12
首页 上一页 1 2
  • ...
  • 47 48 49
  • ...
  • 261 262 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1