高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
MS系列Dwyer微压差变送器
产品详细介绍产品名称:  MS系列Dwyer微压差变送器 产品型号:  MS-111,MS-121,MS-321                                 可测量差压和风速,可带现场液晶显示 特性:量程小,现场可调公制英制2种范围,可监测压差或风速 介质: 空气和非可燃性兼容气体 精度: MS-X21: 0.5" w.c. 和0.25" w.c.: ±1%; 0.1" w.c.: ±2%; 100 Pa 和 50 Pa: ±1%; 25 Pa: ±2%. MS-X11: 5" w.c.和 2" w.c.: ±1%; 1" w.c.: ±2%; 1000 Pa 和 500 Pa: ±1%; 200 Pa: ±2% (@标准条件下) 稳定性: ±1% F.S./年 温度限制: 0~150°F (-18~66°C) 压力限制: 1 psi最大, 可选; 10 psi,脉冲压力 电源: 10~35 VDC (2-线); 17~36 VDC 或隔离的 21.6 ~33 VAC (3-线) 输出: 4~20 mA (2-线); 0~10 V (3-线) 反应时间: 0.5 ~15 sec. 现场连续可调. 提供1.5 to 45 seconds 的95%的反应时间 零偏和满偏: 数字按键 环路阻抗: 电流输出: 0-1250 最大. 电压输出: 最小负载阻抗 1 k 电流消耗: 40 mA 最大 显示 (可选): 4 位LCD 电气连接: 4-20 mA, 2-线: 欧式端子 16~ 26 AWG. 0-10 V, 3-线: 欧式端子16~ 22 AWG 气压连接: 3/16" (5 mm) 内径管子. 最大外径 9 mm 封装: NEMA 4X (IP66) 安装方向: 膜盒垂直位置 重量: 8.0 oz (230 g) 认证:CE   选型表: 型号 输出 范围 安装方式  MS-121 4-20 mA 0.1", 0.25", 0.5" w.c. (25, 50, 100 Pa) 挂墙或盘装  MS-122 4-20 mA 0.1", 0.25", 0.5" w.c. (25, 50, 100 Pa) 管道  MS-321 0-10 V 0.1", 0.25", 0.5" w.c. (25, 50, 100 Pa) 挂墙或盘装  MS-322 0-10 V 0.1", 0.25", 0.5" w.c. (25, 50, 100 Pa) 管道  MS-111 4-20 mA 1", 2", 5" w.c. (250, 500, 1250 Pa) 挂墙或盘装  MS-112 4-20 mA 1", 2", 5" w.c. (250, 500, 1250 Pa) 管道  MS-311 0-10 V 1", 2", 5" w.c. (250, 500, 1250 Pa) 挂墙或盘装  MS-312 0-10 V 1", 2", 5" w.c. (250, 500, 1250 Pa) 管道  MS-131 4-20 mA 10" w.c. (2 kPa) 挂墙或盘装  MS-331 0-10 V 10" w.c. (2 kPa) 挂墙或盘装  MS-141 4-20 mA 15" w.c. (3 kPa) 挂墙或盘装  MS-341 0-10 V 15" w.c. (3 kPa) 挂墙或盘装  MS-151 4-20 mA 25" w.c. (5 kPa) 挂墙或盘装  MS-351 0-10 V 25" w.c. (5 kPa) 挂墙或盘装  MS-021 4-20 mA ±0.1", 0.25", 0.5" w.c. (±25, 50, 100 Pa) 挂墙或盘装  MS-221 0-10 V ±0.1", 0.25", 0.5" w.c. (±25, 50, 100 Pa) 挂墙或盘装 注: -LCD:带LCD显示 -XX-XX2:将型号最后一个数字改为2,管道安装方式
深圳市德威达科技有限公司 2021-08-23
催化二氧化碳和环氧化合物制取环碳酸酯
随着人们对于环境问题的日益重视,由于温室气体二氧化碳所引起的全球气候环境问题 受到广泛的关注。解决该问题除了从源头入手,倡导节能减排之外,寻求利用二氧化碳的方法 同样重要。二氧化碳和环氧化合物反应生成环状碳酸酯是目前广泛被研究的化学固定二氧化 碳的重要方法之一,该反应无其他产物生成,原子利用率100%。本项目所使用的催化剂是自 主开发的,将催化活性物质负载到生物质上构建绿色多相催化剂。结合之前的研究成果,催化 反应在连续实验装置
华东理工大学 2021-04-14
新型配位交联的聚合物合金
本技术充分利用材料中的可配位基团,如腈基 (C≡N) 、酯基 (O=C-0) ,同金属阳离子进 行配位交联,创建了一个新的非共价键交联的网络体系。由于金属配位的键能高于氢键键能, 而且变化范围也比较大,因此通过配位交联所获得的材料的力学性能优于通过氢键组装的橡胶 材料;由于配位键的键能低于共价键,可以在一定情况下破坏配位交联而不影响聚合物材料的 主链结构;配位键具有电、磁特性及非线性光学特性,通过选择不同配位数和配位方式的金属 离子,调节金属离子的浓度,改变加工温度和时间等方法控制聚合物的交联程度和交联密度, 实现了聚合物微观结构和材料最终使用性能按需要进行调控;金属离子同橡胶材料的配位是直 接在材料加工过程中一步实现,工艺简单;这种配位交联橡胶的添加剂和加工过程也无污染, 且几乎不需要其他助剂,是一种环境友好的高性能、多功能材料,降低了对环境的污染和产品 的成本。无炭黑添加的配位交联NBR的拉伸强度可超过60MPa,伸长率达到1000﹪,远远优于 硫磺交联、炭黑补强的NBR (拉伸强度通常为20Mpa,伸长率<500%) 。而且由于金属离子的引 入,橡胶材料也具有了一些特殊的性能,例如更加优良的耐油性及同金属材料很好的粘接性 等。这些结果表明金属配位交联的绿色橡胶具有很高的实用价值和广阔的应用前景。
华东理工大学 2021-04-11
先进粉末高温合金的研制及制备技术
采用注射成形工艺实现复杂形状增压涡轮的近终成形,并满足高性能和低成本的要求。根据注射成形涡轮对零件壁厚的要求,选择 ø52mm 涡轮作为研制对象,并完成了中空蜗轮的结构设计及可靠性校验,中空孔径确定为 ø5mm,孔深 25mm,如图 1 所示。对比分析实芯涡轮和中空涡轮的离心应力分布可知,采用中空结构的涡轮,其应力分布较原始涡轮应力分布一致,但涡轮离心应力有所增大,中空结构涡轮的最大离心应力为 626MPa,较原始涡轮增加了 20.4%。涡轮采用中空设计后,自振频率变化很小,频率平均变小 0.167%,可近似认为没有变化。中空结构增压涡轮不仅达到了减轻重量的目的,而且大幅度减小了烧结变形。设计了侧向抽芯模具结构(如图 2 所示),实现了复杂形状增压涡轮的近终成形。采用数值模拟方法对注射成形充模过程进行了模拟,得出了喂料的充模过程(如图 3 所示),并阐明了涡轮在注射成形过程中产生的缺陷与机理。优化了注射成形工艺参数,得出最佳的注射成形工艺参数为:注射温度为 160℃,注射压力为 60MPa,模温为 80℃,最终制备出了无缺陷的注射成形坯。以平均粒度 15μm 的惰性气体雾化的 K418 镍基高温合金为原料,选用 67%装载量,将粉末与粘结剂(60%石蜡+15%高密度聚乙烯+15%聚丙烯+10%硬脂酸)于 140℃在 开放式混炼机中混炼 30min,制备出适合镍基高温合金粉末注射成形的高效粘结剂,制备出了流变性能良好的注射喂料。分析了脱脂方法、脱脂制度和脱脂温度对致密度和最终高温合金性能的影响,掌握了碳、氧含量的精确控制技术。通过烧结+热等静压工艺获得高致密度的粉末高温合金,具有晶粒细小、显微组织均匀、综合力学性能优异等优点。MIM418 合金 1230℃真空烧结相对密度为 97%,热等静压后的样品接近全致密。
北京科技大学 2021-02-01
低成本钒基固溶体贮氢合金
成果描述:氢能做为一种新型能源,以其清洁、高效、来源广泛等优点引起了人们的广泛关注。贮氢合金是发展历史最长、技术最为成熟的储氢介质,在体积储氢密度、工作温度、工作压力、吸放氢动力学性能和安全性等方面都具有优势。 常用的AB5、AB2及AB型储氢合金的储氢量一般都不超过2wt%,限制了其工程应用。钒钛基储氢合金具有超过3.8wt%的理论贮氢量,常温附近放氢量可接近3.0wt%,热力学及动力学性能良好,有望在燃料电池驱动的器件上得到广泛应用。 在863和各级省市政府支持下,已经形成如下技术成果: 1.形成了具有自主知识产权的V-Ti-Cr-Fe四元合金体系,其钒含量可在20-60wt%变化; 2.这类合金多数可用价廉的FeV80中间合金制备,相对于用纯金属钒制备,合金材料成本下降到10%左右,解决了这类合金应用的成本制约因素; 3.这类合金无需活化处理,可直接在室温下吸放氢,298K下6分钟内合金吸氢量普遍超过3.6wt%; 4.截止压为0.01MPa时,部分合金298K放氢量超过2.5wt%,278K吸氢后333K放氢量超过3.0wt%,是目前已见报道的含Fe的低成本钒钛基储氢合金中0.01MPa截止压下放氢量最高的。市场前景分析:近年来,用质子交换膜燃料电池驱动的便携电源、不间断电源、燃料电池自行车、三轮代步车等在国内外市场上悄然兴起,氢燃料电池汽车、潜艇等技术也逐渐成熟并形成市场,钒钛基贮氢合金可以作为氢源为质子交换膜电池提供氢气。与同类成果相比的优势分析:低成本钒钛基贮氢合金项目已与加拿大和国内2家企业等企业开展合作,其中拟与加拿大开展合作建立低成本钒钛基贮氢合金生产线。国内正共同开发制氢-贮氢-燃料电池-燃料电池汽车示范工程,钒钛基贮氢合金系统将作为其中重要的一环。
四川大学 2021-04-10
系列新型民用高温耐热合金
合金性能特点及应用范围新型系列民用高温性能特点及用途 典型合金种类 性能及用途等   抗氧化 能在高达1200~1310℃下长期使用,最高使用温度可达1360℃。可广泛用于各种热电偶保护管、石油化工的高温燃气管道、燃烧装置、各种高温炉、高温辐射管、电子组件、化工设备、蒸汽发生器管道及高温部件等。  高温高强度 具有极高的高温强度和耐磨性能,能在高达900~1280℃高温下长期使用。如各种热风炉、发电厂硫化床、高温模具、陶瓷烧结炉燃烧喷嘴等。  抗硫化 适合于一些高温高硫气氛中使用,如石油、煤培烧厂热交换器、煤处理转换处理设备、气体燃烧炉、燃烧气体交换器等。 抗碳化 适合于气体渗碳炉构件,碳再生及活化装备、乙烯裂解装置的热解管、煤气化及燃烧厂的热交换器等。
北京科技大学 2021-04-11
高性能低成本铸造Al-Si合金
本成果源自于教育部博士点基金项目和江苏省自然科学基金项目。铸造Al-Si合金是两大传统结构材料之一,广泛应用在航空航天工业,军事工业,汽车工业,电力工业,机械工业中。本项目的合金体系是Al-(11.0%-13.0%)Si-(0.3%-0.5%)Mg,属近共晶类合金。
东南大学 2021-04-10
镁锂合金及其集成零件成型
镁锂合金及其复合材料具有高的比强度和比刚度、优良的减震性能和电磁屏蔽性能,在航空、航天、武器、单兵装备、3C产品等领域有着广阔的应用前景。 本项目研制了镁锂基合金及其复合材料的设计技术、熔炼技术、成型工艺和表面处理技术,设计开发了具有超轻(密度约为1.5g/cm3)、高强(抗拉强度200-300MPa)、高模量(70-100GPa)、高稳定性的稀土金属间化合物增强Mg-Li基复合材料,建立了镁锂合金及其复合材料全链条中试制备平台,部分产品样品已经在航空航天、单兵装备等领域获得试用。
北京航空航天大学 2021-04-10
低成本钒基固溶体贮氢合金
化石能源的枯竭和环境污染问题是推动全球新能源开发热潮的两大因素。氢能做为一种新型能源,以其清洁、高效、来源广泛等优点引起了人们的广泛关注。贮氢合金是发展历史最长、技术最为成熟的储氢介质,在体积储氢密度、工作温度、工作压力、吸放氢动力学性能和安全性等方面都具有优势。 常用的AB5、AB2及AB型储氢合金的储氢量一般都不超过2wt%,限制了其工程应用。钒钛基储氢合金具有超过3.8wt%的理论贮氢量,常温附近放氢量可接近3.0wt%,热力学及动力学性能良好,有望在燃料电池驱动的器件上得到广泛应用。 在863和各级省市政府支持下,已经形成如下技术成果: 1.形成了具有自主知识产权的V-Ti-Cr-Fe四元合金体系,其钒含量可在20-60wt%变化; 2.这类合金多数可用价廉的FeV80中间合金制备,相对于用纯金属钒制备,合金材料成本下降到10%左右,解决了这类合金应用的成本制约因素; 3.这类合金无需活化处理,可直接在室温下吸放氢,298K下6分钟内合金吸氢量普遍超过3.6wt%; 截止压为0.01MPa时,部分合金298K放氢量超过2.5wt%,278K吸氢后333K放氢量超过3.0wt%,是目前已见报道的含Fe的低成本钒钛基储氢合金中0.01MPa截止压下放氢量最高的。 主要技术指标:1.298K下吸氢量大于3.6wt%。 2.截止压力为0.01MPa时,298K下放氢量大于2wt%;部分合金的放氢量大于2.5wt%,278K吸氢后333K放氢量超过3.0wt%。 应用范围:近年来,用质子交换膜燃料电池驱动的便携电源、不间断电源、燃料电池自行车、三轮代步车等在国内外市场上悄然兴起,氢燃料电池汽车、潜艇等技术也逐渐成熟并形成市场,钒钛基贮氢合金可以作为氢源为质子交换膜电池提供氢气。
四川大学 2021-04-11
一种牙科用钛合金材料
本发明公开了一种牙科用钛合金材料,合金成分包括钛、锆、铜和微量元素,Zr的重量百分比为5~15%,Cu的重量百分比为1~5%,微量元素M的重量百分比为0.05~0.5%,Ti余量。所包括的微量元素M根据性能匹配的要求可调节,至少为锂或稀土元素镧、铈中的一种;其相结构为主相α和少量的β相。材料的性能指标如下:维氏硬度为260-320,抗压强度为1300-2000MPa。
四川大学 2021-04-11
首页 上一页 1 2
  • ...
  • 58 59 60
  • ...
  • 259 260 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1