高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
八爪鱼教育装备超级单品-蜂鸟X1重磅登场
产品详细介绍八爪鱼教育装备超级单八爪鱼教育的年度“超级新品”终于正式登场。 2020年6月16日,八爪鱼教育“更轻的未来”2020超级新品发布会,正式开启全网直播。八爪鱼发布了全新产品线下的首款“超级新品”——蜂鸟X1,教育移动直播箱。 发布会在映目、微博,B站,快手,西瓜视频等平台进行全网同步直播,吸引了近10万人在线观看。直播获得了诸多用户致电垂询和高度关注。 这次发布会是八爪鱼教育的一次大冒险。因为创新的价值观,和做精品的决心,八爪鱼开辟了全新的产品线,要做教育行业中还没有人做过的事,开辟一片他人尚未踏足的新领地,打造教育行业的“超级单品”。 1蜂鸟X1,更轻的未来 教育的未来,理应更“轻”。蜂鸟XI——教育移动直播箱,是八爪鱼为教育场景量身打造的超级单品。也是目前为止,最为便携的、可应用于多种教学场景的移动直播设备、移动视频录制设备。 它和传统的同类设备比较,最大的优势就是轻,小,简单,便携。剔除了所有复杂繁琐的功能和操作过程,一切精简,保留最核心的部分。以AI技术赋能功能应用,适应多种教学场景。 蜂鸟X1是真正的“无线“设备,只需要架起脚架,安装AI摄像机,然后开机录制,迅速搞定。与同类设备相比,减除了近2/3的体积,用一只小箱子,就可以把全部家当都装进去,拎箱即走,大大提高了便携性。 因此,蜂鸟X1的使用不再局限于单一场景。可以自由移动,机位设定也更自由,这意味着,场景的选择扩宽了,以前无法直播或者本地录制的场景,因为蜂鸟的轻便和自由,都可以轻松实现。 2黑科技,真AI 在新品发布前,我们也曾露出一些新品的关键词,比如黑科技、真AI。蜂鸟X1的核心——AI摄像机XY10,具有三大核心优势,AI追踪,智能构图,手势感应。真正做到“黑科技、真AI”,让教育场景的使用更加得心应手。 在AI追踪方面,XY10可以实现最远 40 米,水平方向最快 180 度/秒的智能追踪、跟焦拍摄。自动对跟踪目标构建全方位的视觉模型并进行精确识别,即便是目标人物在复杂环境或遇到障碍物丢失时, XY10也能在目标出现的第一时间再次寻回并继续追踪人物拍摄。这对于教学场景的使用来说绰绰有余。 同时,XY10-AI高清摄像机将人像构图、尺度估算等AI技术引入到智能拍摄系统中。拍摄时,可自动对人物进行专业构图优化处理,其功能包括自动构图,手动构图,景别锁定等等。XY10还创造性的融合了手势感应。自然易用的手势让快门控制、跟拍追随、镜头变焦等都能一手搞定。 3高度开放,多场景覆盖 蜂鸟的优势,决定了它可以覆盖更多使用场景,如教学录播、微课录制、教师教研、双师课堂、大型会议,还有户外教学、运动会、学校晚会录制等。都可以使用蜂鸟X1完美记录。可以说,拥有一套蜂鸟X1,你就不再需要其他设备了,适用大多数教学场景,同时节约了教学装备的成本。 蜂鸟X1具有高度的开放性。可以使用自有平台,也可以兼容各大厂家的第三方剪辑软件。我们也为蜂鸟适配了三个版本:移动直播旗舰5G版、移动直播LTE4G版、标准WiFi版。每个版本都有单双机位工选择,最大化的满足用户的多样性需求。 4“拨云见日”,等你加入 八爪鱼还为蜂鸟X1配备了一项重要计划——“拨云”扶贫计划。2020年,所有扶贫项目及扶贫城市项目采购蜂鸟X1系列,该项目均可补贴15%。八爪鱼教育投放的补贴年度总预算为1000万元。 八爪鱼教育希望能够通过最先进的设备,将优质的教育内容传递到贫困地区,在今年这个特殊时期,能够切实的为教育事业做出一点贡献。 八爪鱼的新产品线已开启,在发布会结束后,蜂鸟X1同步开启首批限量预约,这预示着蜂鸟X1要正式面临市场的检验了。我们对蜂鸟X1充满信心,因为它代表着教育的“未来”。 旅程才刚开始,未来“很轻”,但梦想和价值依旧具有非同寻常的分量,我们迈出第一步,用时代前沿的技术来武装自己,提升效率。之后,我们还会有更多为教育服务的新鲜科技好物,等待我们共同去发现和探索,不断打破常规,用科技赋能教育。
广州八爪鱼教育科技有限公司 2021-08-23
电解铝碳渣制备氟化铝关键技术
项目成果/简介: 工艺描述: 将电解铝火眼碳渣破碎,与脱碳药剂充分混合,加入高温炉进行脱碳,得到中间产品;中间产品磨粉,与脱钠药剂充分混合,加入高温炉进行脱钠,得到粗氟化铝;粗氟化铝加入水浸槽,洗盐后得到氟化铝。 技术亮点: 属于电解铝危废高值产品化技术,拥有发明专利3件;实现了碳渣的全量利用,节约了原生氟资源;整个工艺绿色,没有废水废渣产生,废气达标排放;单位能耗远低于原生氟化铝,有效减碳;氟化铝产品符合现有国家标准。 知识产权类型:发明专利知识产权编号:202011250785.X技术先进程度:达到国际先进水平成果获得方式:与企业合作获得政府支持情况:无获得经费:7.50万元自筹资金:100.00万元
郑州大学 2021-04-11
连续流强化微电解废水处理装置
本项目提出的连续流强化微电解废水处理装置,在水平转动筒体的进、出水口端分别设计了入口端和出口端密封旋转接口,同时设置水气的进、出导管,使处理装置处于固液气全充满状态,保证了铁碳床中的溶解氧浓度,填料随装置的转动而相互摩擦使铁碳表面形成的钝化膜不断更新,提高了设备的有效利用容积,增加了废水与外加电场的作用时间,提高了装置的处理能力和效率。 该方法可应用于下列场合: 高浓度废水的预处理:解决对生化处理的抑制作用; 低浓度污水直接处理:达标排放或回用; 生化处理后尚未达标污水的达标处理; 生化处理后污水深度处理以便回用。 实验及工程实践中已经处理过的各种污水包括: 含油污水(油田采油污水,炼油污水,脂肪加工污水等); 有色污水(染料生产污水,印染污水,纺织加工污水等); 化工污水(有机合成,香料合成,木糖醇生产等); 金属加工切削液(油基及水基); 生活污水的深度处理,中水回用;
北京科技大学 2021-04-11
电解铝碳渣制备氟化铝关键技术
工艺描述: 将电解铝火眼碳渣破碎,与脱碳药剂充分混合,加入高温炉进行脱碳,得到中间产品;中间产品磨粉,与脱钠药剂充分混合,加入高温炉进行脱钠,得到粗氟化铝;粗氟化铝加入水浸槽,洗盐后得到氟化铝。 技术亮点: 属于电解铝危废高值产品化技术,拥有发明专利3件;实现了碳渣的全量利用,节约了原生氟资源;整个工艺绿色,没有废水废渣产生,废气达标排放;单位能耗远低于原生氟化铝,有效减碳;氟化铝产品符合现有国家标准。 
郑州大学 2021-05-10
高性能大电流(50kA)铜箔电解电源装备
超薄铜箱是电子、通信、航天等产业的关键材料,而大电流电解电源是超薄铜箔高效高质生产的关键装备,对电流纹波、稳定性、功耗等技术指标要求极高,实现难度大。罗安院士发明的多高频变压器PWM全控变换电解电源技术,解决了大电流、低纹波、低功耗铜箔电解的难题。他发明的铜箔电解电源结构及控制方法,实现了IGBT的零电压开通与关断, 工作频率达20kHz,电源模块电流突破50kA,研制出了高性能大电流(50kA)铜箔电解电源装备。他发明的多电源模块阻抗匹配自动均流控制方法,突破了多电源模块并联静动态均流的国际难题,均流误差≤0.5%。 高性能大电流(50kA)铜箔电解电源装备与国际知名DYNAPOWER 公司产品相比,电流纹波由2%下降到0.5%,电耗降低12% ,独占了铜箔生产用大电流整流电源市场,广泛应用于电镀、电解、表面处理等领域,市场占有率在50%以上。
湖南大学 2021-04-11
二次电池用固态电解质测试技术
应用固态电解质的二次电池有望解决目前商用二次电池的高安全隐患和低能量密度等重要问题。目前固态化的二次电池尚难实现商业化应用,除了材料性能有待提高之外,严格统一的测试标准和规范化的测试技术也是其实用化的主要瓶颈。固态电解质的主要性能参数包括:离子/电子电导率、电化学窗口、界面稳定性和与电极材料的界面兼容性等。本项目将基于电化学原理,应用计算机软件编程和接口技术,结合固态电解质的设计、制备和封装工艺等,将固态电解质的测试技术进行标准化整合为实际测试系统,实现固态电解质
厦门大学 2021-01-12
一种铅液流电池及其电解槽
本发明公开了一种铅液流电池及其电解槽。该铅液流电池包括电解槽、循环装置、正极板、负极板以及储液罐;所述电解槽包括正极插槽、负极插槽以及电解液腔,所述正极插槽以及负极插槽平行设置,且在垂直方向通过电解液腔连通;所述正极板以及所述负极板分别通过所述正极插槽以及负极插槽与所述电解槽固定;所述电解槽的侧面设置有进水口和出水口,所述进水口和出水口在水平方向与电解液腔连通;所述电解液腔以及所述储液罐中装有电解液,所述循环装置连接所述储液罐以及所述电解槽的进水口,同时连接所述电解槽的出水口以及所述储液罐。该铅液流
华中科技大学 2021-04-14
预测固体电解质界面的原子模拟软件
本技术提出了基于多尺度理论模拟结合深度机器学习的一整套解决方案,即利用先进多尺度模拟方法精准解析SEI原子结构,建立新一代SEI模型,阐明SEI结构和形成机制,完整构建SEI与电池性能之间的内在联系,定向设计符合不同商用条件的新型电解液配方,为开发新一代高能量密度电池提供可能。 一、项目分类 显著效益成果转化 二、技术分析 随着智能手机、笔记本电脑等消费电子产品的快速发展,锂离子电池(Lithium Ion Battery, 简写为LIB)已经成为最成功的电化学储能设备之一,并从根本上影响并改变了人们的日常生活方式。随着制造工艺的逐步成熟,LIB的能量密度已经接近其理论极限。另一方面,可移动电子设备的快速普及和汽车电动化的蓬勃发展也不断要求开发具有更高能量密度的充电电池以满足实际使用的需求,而最先进的LIB依然无法完全满足上述需求。因此,寻找更高能量比的锂电池电极材料,加快下一代新型锂电池关键技术的相关研究,已成为制约锂电池技术产业发展进步的关键问题。锂金属电池的能量密度虽足以达到下一代电动车的要求,但其自身的稳定性仍令人担忧,这主要是因为Li金属的反应活性过高,其几乎可与所有的电解液均能自发地发生化学反应。在电池的运行过程中,Li电极和电解液之间通过自发化学反应和电化学反应导致了固体电解质界面(solid electrolyte interphase,SEI)的形成。当所形成的SEI结构不均匀时会诱发电池体积膨胀,此外,充放电过程中锂的不均匀沉积会导致锂枝晶的形成,锂枝晶的不规则生长会刺穿SEI,导致SEI膜发生破裂,并产生死锂,降低锂金属电池库伦效率;更严重的是,锂枝晶的不断生长会刺穿隔膜,造成电池内部的短路,导致火灾和爆炸等安全事故,大大缩短了电池的使用寿命,严重阻碍了其大规模商业化发展。因此,SEI对LMB的性能具有至关重要的影响。良好且稳定的SEI可以阻止(或者大幅度减缓)负极界面上反应的持续发生,起到保护Li电极的作用。针对下一代高稳定性锂金属电池设计中存在的关键问题,结合国际研究进展与本团队前期研究基础,我们提出了基于多尺度理论模拟结合深度机器学习的一整套解决方案,即利用先进多尺度模拟方法精准解析SEI原子结构,建立新一代SEI模型,阐明SEI结构和形成机制,完整构建SEI与电池性能之间的内在联系,定向设计符合不同商用条件的新型电解液配方,为开发新一代高能量密度电池提供可能。本方案已形成完整的工作流,相关自动化软件已开发完成并交付使用,且具有完全的自主知识产权,可用于国内外上游电池生产研发企业积累原始电池性能数据,大范围筛选有效电解液组分,指导下一代高能量密度锂电池研制。 我们的技术优势与创新主要表现在: 1)首次在电池体系中实现了QM与MM的混合模拟与混合加速; 2)在电池体系模拟中实现了开放电子体系对电化学反应的热力学和动力学预测; 3)在保证精度的前提下,实现了在纳米尺度上对真实的实验SEI结构直接模拟; 4)通过耦合深度机器学习,实现了电解液组分大范围筛选与性能优化。
苏州大学 2022-08-15
一种向钢液中加入纳米粒子以优化钢组织的方法
(专利号:ZL 201310211127.3) 简介:本发明公开了一种向钢液中加入纳米粒子以优化钢组织的方法,属于钢铁冶金领域。其步骤为:将纳米粉体与纯铁粉进行混合分散,纳米粉体与纯铁粉的质量百分比分别为1~40%、60~99%,纳米粉体的平均粒径为10nm~5000nm;混合料在惰性气体气氛下利用热压技术烧结成纳米粉体棒,该纳米粉体棒的芯材为钢棒,纳米粉体棒的外层为混合料,热压烧结的压力为5~40MPa,烧结温度为1000~1400℃,
安徽工业大学 2021-01-12
高氮特种不锈钢项目
本项目主要依托东北大学近十年来在加压冶金装备和超高强韧、耐蚀高氮不锈钢品种开发方面的长期技术积淀,投资工业化规模的加压冶金装备(一台1吨的加压感应炉和一台5吨的加压电渣炉),联合开发和生产超高强韧、耐蚀高氮不锈钢材料系列,用于制造航空航天、军工、高端装备制造用高端轴承、海洋工程耐海水腐蚀部件、医用生物材料、高端医疗工具、民用特种刀具、特种塑料模具和高端阀门等。目前该项目在国内属于首创。 高氮耐蚀塑料模具钢M303、M333(0.1%N)和M340(0.2%N),其组织更均匀细小,同时具有最佳的抛光性能以及极佳的耐腐蚀性能、良好的韧性、加工性能和尺寸稳定性,可高端耐蚀镜面塑料模具市场需求。P900N(18Cr-18Mn-0.9N)和P900NMo(18Cr-18Mn-2Mo-0.9N)和P2000(16Cr-14Mn-3Mo-0.9N )该类钢具有高的屈服强度和塑性,良好的耐腐蚀性能特别是耐应力腐蚀和低的导磁性能,强度级别更高的P900N、P900NMo和P2000在航母、潜艇和各种舰船上的大型电机用护环以及航母弹射器上用的护环制备中具有广泛的应用前景,同时P2000可以用与人体植入材料、以及高强紧固件。 Fe-Cr-Mn-N系高氮奥氏体不锈钢(氮含量0.8-1.5wt%),其无磁性而大幅提高武器装备的隐蔽能力和抗磁干扰能力,其优良抗弹性能和高防护系数,同时兼有优良的耐蚀性能,可作为两栖坦克的高强结构材料和两栖装甲的理想防护材料,为装甲钢方面的发展添加了一条新途径。Fe-Cr-Ni-N体系的高氮不锈钢具有优异的耐应力腐蚀性能和高的屈服强度,可应用于压力水(PWR)和沸腾水(BWR)核反应的冷却材料。因此,在核动力航母和核潜艇上也将有潜在的应用。目前东北大学已成功开发出制备超高强韧、耐蚀高氮不锈钢的加压冶金关键设备和核心工艺技术,并实验室规模成功制备性能优异的高氮马氏体不锈钢Cronidur30、M303、M333和M340,高氮奥氏体不锈钢P900N、P900NMo和P2000等,已经基本完成了航空用轴承、高端耐蚀塑料模具、生物植入器件和高强紧固件等用材料的实验室规模试制。
东北大学 2021-04-11
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 41 42 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1