高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
电子封装用铝基复合材料
电子封装用铝基复合材料主要包括SiCp/Al、AlNp/Al和Sip/Al等复合材料。它们采用专利挤压铸造方法制备,该工艺生产成本低、设备投资少、制成的材料致密度高,且对增强体和基体合金几乎没有选择,便于进行材料设计。“金属基复合材料工程技术研究所”在这一工艺上拥有多项发明专利,技术成熟,并具有独立开发新型材料的能力。 本电子封装材料具有低膨胀、高导热、机械强度高等优点,可以与Si、GaAs或陶瓷基片等材料保持热匹配。与目前常用的W/Cu、Mo/Cu复合材料相比,导热性、热膨胀性能相
哈尔滨工业大学 2021-04-14
碳/碳复合材料工艺技术装备及应用
上海大学复合材料研究中心是国内碳/碳复合材料及其预制体研制的重要基地,依靠自主研发形成了系列碳基复合材料关键技术,工艺先进可靠,装备自主可控,相关成果处于国际先进水平。 一、项目分类 促成重大科技创新突破的关键性、标志性事件或人物 二、成果简介 上海大学复合材料研究中心是国内碳/碳复合材料及其预制体研制的重要基地,依靠自主研发形成了系列碳基复合材料关键技术,工艺先进可靠,装备自主可控,相关成果处于国际先进水平。研究成果获国家科技进步二等奖4项,国家发明三等奖1项。研制的碳/碳复合材料具有耐烧蚀、抗热震、高比强度、高温性能稳定、耐磨性能优良等特点。
上海大学 2022-08-16
镁铝复合材料制备新方法
本成果提出了两种镁/铝复合材料新型加工方法,可以用来制备具有特种 用途的镁铝复合材料。主要包括:镁/铝复合棒材的挤压制备和镁铝复合板材的 挤压加工,已经申请了国家发明专利,并获得授权。具体介绍如下: 1.  一种铝合金包覆镁合金棒材的挤压加工制备方法: 采用挤压加工制备铝合金包裹镁合金的棒材,最终产品可为棒材及 板材及管材等型材,具体方法包括:在铝合金挤压锭的中心嵌入镁合金材料, 此复合挤压棒随后进行挤压加工成棒材,最终棒材外表为铝合金,心部为镁 合金,且其比例与原始挤压棒中镁合金和铝合金的比例相当。与单纯的铝合 金棒材相比,此种复合结构可显著降低比重,减轻结构重量;与单纯的镁合 金棒材相比,外表的铝合金复合结构使此复合结构具有优异抗腐蚀性能。 2,  一种镁铝多层复合板材的挤压加工方法: 提出了利用挤压加工制备镁铝复合板材,通过对镁合金和铝合金铸态坯料挤 压加工可以制备出单层或多层复合板,通过调控挤压坯料中镁合金和铝合金的 比例可以有效调控多层复合板材中的镁合金和铝合金的比例。与传统的累积叠 轧方法相比,此方法的优点如下: (1) 采用铸态坯料制备板材,无需将难变形的镁合金加工成板材后再进 行复合,因此加工成本低; (2) 由于挤压坯料为块状而非板材,表面氧化物量少,可以有效的减少 表面氧化物对复合板材截面结合的影响; (3) 整个复合板材中镁合金处于中心部位,铝合金处于表面,可以有效 的防止中心易腐蚀的镁合金部分的腐蚀。
重庆大学 2021-04-11
陶瓷纤维增强复合材料铝活塞
陶瓷纤维增强铝活塞(Ceramic Fiber-Reinforced Aluminum Piston,简称CFR活塞,如附图),是一种高新技术产品。现代柴油机采用增压、强化技术后,原有铝合金活塞难以满足材料需求,用CFR 活塞代替普通铝合金活塞已成为发动机行业的趋势。日本、美国、德国等国的发动机生产厂家都在大力研究和推广应用。东南大学材料系历经多年的开发研究,研制成功了陶瓷纤维增强铝活塞,并已在汽车发动机、大马力柴油机上得到应用,与普通铝合金活塞相比,可使活塞使用寿命提高3-5倍,并提高发动机功率,减少装配间隙,降低运行噪音、燃油消耗和废气排放,若用CFR活塞取代奥氏体镶圈铝合金活塞,则可使制造工艺简单,生产成本降低。
东南大学 2021-04-11
颗粒增强铝基复合材料制备技术
本项目由北京交通大学机电学院材料成型研究室研制成功,用于制备SiC颗粒增强铝基复合材料,制备设备如图所示。设备主要由7部分组成:坩锅、双搅拌装置、电阻炉、真空双搅拌系统和计算机控制系统。该设备可以在大气、氩气或氮气以及真空不同状态下制备复合材料,不同保护气氛下所制备的材料质量各不相同。采用双重搅拌结构,内搅拌和外搅拌,即主搅拌和副搅拌。主搅拌杆上安装螺旋桨叶,螺旋桨叶片上装有搅拌翅,这种双重搅拌机构在原理上可使涡流作用降到最低程度,可减少熔体吸入气体量,刮除挂在坩锅壁上的SiC颗粒,能将颗粒带入熔体并使其弥散分布,有利于提高复合质量。 40kg复合材料制备设备应用范围: 本项目主要用于颗粒增强复合材料的生产,也可对其它发气量大的材料进行脱气,除杂,制备高质量的材料。
北京交通大学 2021-04-13
纳米碳材料高效生产技术应用
成果描述:纳米碳材料在人类的生产生活中正显示出越来越多的重要作用,具有广阔的市场空间。碳纳米材料生产由于成本高及部分技术上的瓶颈制约了大规模生产,市场拓展减缓。我们团队经过十余年的研究和开发,采取研发创新的高新技术,可廉价高效地生产高附加值碳纳米材料(纳米碳管,纳米碳纤维)。目前技术路线可行,实验室小试阶段已完成;团队急需通过有实力企业的诚意投入,共同完成纳米碳材料新产品的放大生产;快速扩大工业化规模生产和市场销售,形成品牌。市场前景分析:可用于多个高技术产品市场,附加值高;例如:可强化锂电池电极材料性能和锂电池的整体性能;可用于超级电容器储存电能;可用于隐身吸波材料;以及飞机、汽车等轻质配件材料,轻质合金钢,强化钢化高分子材料等。其中纳米碳纤维年用量4万吨,纳米碳管年产能数千吨;而且每年都在明显增长。与同类成果相比的优势分析:目前本团队创新研发的新技术的指标主要有催化剂性能指标和碳纳米管纯度指标。碳纳米管 CVD 制备过程中催化剂的性能将直接影响所生产的碳纳米管的性能。碳纳米管的技术指标主要有反应温度、制备 CNTs 单位质量产量、及原料固碳率等。本技术中催化剂反应温度低于800 ℃, 催化剂的产碳能力可达CNTs 60 - 120 kg/kg cat, 原料单程固碳率为 15%-50%;纳米碳材料纯度高,在85%-98%。碳纳米管的纯度高,制备的碳纳米管纯度超过85%;有的达到 98%。国际先进,国内先进。
四川大学 2021-04-10
纳米碳材料高效生产技术应用
纳米碳材料在人类的生产生活中正显示出越来越多的重要作用,具有广阔的市场空间。碳纳米材料生产由于成本高及部分技术上的瓶颈制约了大规模生产,市场拓展减缓。四川大学研发团队经过十余年的研究和开发,采取研发创新的高新技术,可高效低成本地生产高附加值碳纳米材料(纳米碳管,纳米碳纤维)。 新技术的指标主要有催化剂性能指标和碳纳米管纯度指标。碳纳米管 CVD 制备过程中催化剂的性能将直接影响所生产的碳纳米管的性能。碳纳米管的技术指标主要有反应温度、制备 CNTs 单位质量产量、及原料固碳率等。本技术中催化剂反应温度低于800 ℃, 催化剂的产碳能力可达CNTs 60 - 120 kg/kg cat, 原料单程固碳率为 15%-50%;纳米碳材料纯度高,在85%-98%。碳纳米管的纯度高,制备的碳纳米管纯度超过85%;有的达到 98%。此技术路线可行,实验室小试阶段已完成。 碳纳米管、碳纤维是近十年飞速发展的新型纳米材料,具有很大的商业价值和用途,附加值高。碳纳米管可以作为模具制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。碳纳米管和金属形成金属基复合材料;这样的材料强度高、模量高、耐高温、热膨胀系数小、抵抗热变性能强。
四川大学 2021-05-11
黑磷-碳布复合材料制备技术
黑磷是一种新型的二维材料,由于其较宽的可调控直接带隙、高载流子迁移率和优异的各向异性光电性质,在电子学、光电子学、生物医药、电化学和储能等领域展现了巨大的应用潜力,成为“后石墨烯时代”最受瞩目的二维材料之一。碳布(石墨化碳纤维布)是一种拥有独特功能性质的、可用于支撑功能型材料的三维空间构型的材料。目前,碳布主要用作电沉积的基底材料,以与其它功能材料复合形成新的复合材料,所得的复合材料在电化学和储能方面有着广泛的应用前景。我们发明了一种黑磷-碳布复合新材料,制备方法简单、温和且高效,所制得的黑磷-碳布复合材料表现出优异的电化学性能,特别是在电化学析氧反应中表现优异,能为电化学反应分解水提供新的材料选择。 本技术以单质锡、碘、磷以及碳布作为原料,制备了一种新型的黑磷-碳布复合材料。所得的黑磷-碳布复合材料表现出优异的电化学性能,特别是在电化学析氧反应中表现优异,能为电化学反应分解水提供新的催化剂选择。
清华大学 2021-04-11
新型功能材料泡沫铝的制备及性能研究
成果与项目的背景及主要用途: 泡沫铝材是一种新型的功能材料,一般孔隙率在 45%~98%之间,根据孔 隙特点分为开孔与闭孔两种,各国学者早在 40 年代后期就对泡沫金属材料有所 研究,但由于发泡工艺与孔的尺寸很难控制,一直未得到发展,直到 80 年代中 期以后才取得长足进展,开发出了一些有工业价值的生产工艺。目前,日本与德 国在研究、生产与应用泡沫铝材与其他金属泡沫方面居世界领先地位。我国对泡 沫铝材的研究始于 80 年代后期,并取得了一系列的研究成果,但尚未取得突破 性的成就,仍处于起步阶段。 目前,泡沫铝的应用主要有:防火和吸音板、冲击能量吸收材料、建筑板、 半导体气体扩散盘、热交换器、电磁屏蔽物等方面。还应用于冶金、化工、航空 航天、船舶、电子、汽车制造和建筑业等领域,应用范围还在不断扩大。 技术原理与工艺流程简介: 本课题采取的是传统的粉末冶金工艺,把铝粉和造孔剂混合后,压制成预制 件,在热水中将造孔剂溶解掉,然后在真空炉中对预制件进行真空烧结,就得到 了开孔泡沫铝。本试验方法具有以下优点: 1.采用的粉末冶金法可以制备复杂形状的试样,工艺简单容易实现。 2.通过改变工艺参数可以十分容易地控制孔隙率、孔形状及孔的大小。这一 点是其它方法难以做到的。 3.采用的造孔剂为尿素、碳酸氢铵,成本低、形状可控且容易去除。 技术水平及专利与获奖情况: 1. B. Jiang, N.Q. Zhao, C.S. Shi, J.J. Li. Processing of open cell aluminum foams with tailored porous morphology. Scripta Mater 53(2005)781-785.(JCR 工程技术 二 区,2004 年影响因子 2.112,检索号:952BD.同时被 Ei 检索,检索号:05289206237) 2. B. Jiang, N.Q. Zhao, C.S. Shi, X.W. Du, J.J Li, H.C.Man. A novel method for making open cell aluminum foams by powder sintering process. Mater lett 59(2005)3333-3336. (JCR 工程技术 三区,2004 年影响因子 1.186) 113天津大学科技成果选编 3. 姜斌,赵乃勤. 泡沫铝的制备方法及应用进展.金属热处理. 30(2005)36-40. (Ei 检索,检索号:05279197817) 应用前景分析及效益预测: 泡沫铝以其独特的结构而具有许多优异的性能,它不仅具有多孔材料所具有 的轻质特性,还具有金属所具有的优良的力学性能和热、电等物理性能,如渗透、 阻尼、能量吸收、高比表面积、电磁屏蔽等性能。目前,泡沫铝材已经广泛应用 于防火装饰材料、冲击能量吸收材料、热交换器等。由粉末冶金法制备的泡沫铝 工艺简单,成本低廉,可以制备复杂形状的试样。并且通过改变工艺参数可以容 易地控制孔隙率、孔形状及孔的大小,这一点是其它方法难以做到的。所以本方 法有推广应用价值。 应用领域: 泡沫铝的应用主要有:防火和吸音板、冲击能量吸收材料、建筑板、半导体 扩散器盘、热交换器、电磁屏蔽物等方面。还可广泛应用于冶金、化工、航空航 天、船舶、电子、汽车制造和建筑业等领域。 合作方式及条件:合作开发 7、高附加值尖晶石结构铁酸镍/铁酸镁/铁酸锌纳米粉的制备方法 成果(项目)背景、简介及应用领域: 据市场调查公司(富士经济)的调查,纳米技术最先实现商业化的就是材料领 域。纳米材料的世界市场规模到 2015 年预计可达 15000 亿美元,其中电子学领 域最高可达 8000 亿美元;生物技术领域最高可达 3000 亿美元。 纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域 的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结 构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理 和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用 价值。 尖晶石结构的纳米NiFe2O4作为一种陶瓷材料具有耐高温,高硬度,高强度, 114天津大学科技成果选编 热稳定性好等优点。NiFe2O4 是一种常用的软磁材料,可用作磁头材料、矩磁材 料和微波吸收材料,同时也是制备性能优良的磁电转换复合材料所选用的磁致伸 缩材料,在电子工业上具有极广阔的应用前景。NiFe2O4 还是好的气敏传感材料, 还可以作为锂电池的负极材料。 本技术是一种新颖的纳米化合物的制备方法,该法用水和热能替代传统的草 酸盐、碳酸盐等,与传统共沉淀法制备超微粉相比,由于直接利用了萃取过程中 的物料,降低了粉末的生产成本,并得到了更高纯度的产品,减少了化工原料的 消耗和废水的排放,是制备高品质超细金属氧化物材料经济便捷的绿色化学工艺。 因此,这种结合溶剂萃取制备高级无机材料的新过程是极有发展前途的新方法。 这个过程容易将沉淀粒子的大小控制在纳米范围内,从而克服了直接水解法难以 控制氧化物粒度的弊端。 成果(项目)技术特点(技术优势及主要指标): 本项目采用先进的新方法,合成一些售价在 500~2000 元/公斤的高附加值的 纳米材料,该新技术吸收和继承了液相法的优点并解决了现有合成方法中存在的 一些不足。本技术采用低成本的原料,降低了能耗,且容易产业化。 该新技术为一步合成方法,吸收和继承了液相法的优点并解决了现有合成方 法中存在的如下问题: 1)解决了固相法中产物粒度不易控制、批次间分布不均匀,产品粒径大、 形貌不规则的问题,通过改变工艺条件,可以调节产品的形貌、粒度大小和性能。 2)本技术为一步合成法,反应在短时间内就能完成,且省去了湿化学法后 续工艺的高温煅烧和球磨过程,能直接合成纳米级或微米级的粉体。 3)通过使用有机萃取剂对亚铁离子的萃取提高了产品的纯度,通过萃取剂 的循环,降低了生产成本、减少了化工产品的消耗和排放,属洁净工艺。 4)容易实施对产品的改性。 5)原料来源广泛、制备工艺简单、流程短、耗能低、工艺条件容易掌握、 易于工业化生产。 技术水平及专利与获奖情况: 1) 申请了国家专利,并获授权:尖晶石结构铁酸镍纳米粉的制备方法, 115天津大学科技成果选编 申请号: CN200710057617.7,授权号: CN100506749,授权日: 2009.07.01 尖晶石结构铁酸镁纳米粒子的合成方法, 申请号: CN200710057615.8,授权号: CN101070192B,授权日: 2010.10.13 2) 该技术在实验室已取得决定性突破。通过与企业的合作,进一步研究开 发,可望达到或超过国际同类产品的水平。 3) 该产品已完成放大实验,经中试后,便可进行试生产和生产。 应用前景分析及经济效益预测: 本技术采用的液相合成新方法优势明显,如反应时间短,后处理简单等。而 且样品为纳米级,粒径也较均匀,这对产品的性能有很大影响。此外,有机体系 中还可以直接用纯水做反应物,无废碱排放,有机萃取剂也可以循环使用,属于 绿色工艺,具有重要的实际应用价值。 本技术的原料成本低于其它方法,设备投资小:主要设备是低压反应釜,反 应在中性的介质中和低于 150OC 的温度下进行,因而对设备的耐腐蚀性要求不 高,与目前的固相法相比设备的投资小。 本项目按照年生产能力 100 吨、原料成本 5 万元/吨、产品销售价 20 万元/ 吨计算,毛利收入 1500 万元。 技术转化条件:(包括:原料、设备、厂房面积的要求及投资规模) 1.原料,具体如下: ①镍盐:可以选用工业级的硫酸镍、氯化镍等,通过溶剂萃取提纯 Ni2+。 ②少量氨水和萃取剂(循环使用)。 2.主要设备:低压反应釜、过滤机、干燥箱、粉碎机。 3.生产用房高 4 米,其它为普通房。 4.投资规模:根据投资确定,如本年产总量 500 吨,项目开发总投资约为 2000 万元,利税可达到 3000-4000 万。 合作方式及条件:面议。
天津大学 2021-04-11
亚微米陶瓷颗粒增强铝基复合材料
本项目采用元素粉末法制备高性能的亚微米陶瓷颗粒增强铝基复合材料,突破了亚微米颗粒在基体中的分散和铝基复合材料的二次加工困难瓶颈难题,制备的亚微米陶瓷颗粒增强金属基复合材料具有高的比强度、比刚度、热稳定性,较低的热膨胀系数,优良的导热、耐磨、耐腐蚀性等特点,机加工表面光洁度高。亚微米陶瓷颗粒增强金属基复合材料的成功制备,在金属基复合材料实际应用方面取得了突破性的进展。 亚微米陶瓷颗粒增强金属基复合材料是一种极具潜力的工程材料,其在航空航天领域、汽车装甲、电子封装、高轻化自行车等方面取得了大量应用。其中以碳化硼为增强体的B4C/Al复合材料耐磨性很高,在制造喷砂嘴、电触点、摩擦和耐摩擦材料时得到了广泛的应用,并且在机器和设备端部密封件上,碳化硼为基体的B4C/Al复合材料也有出色表现。此外,碳化硼具有良好的耐酸碱腐蚀性能,在有气体腐蚀条件下工作时,效果极佳,用亚微米B4C制备的B4C/Al复合材料制备的喷砂嘴和喷丸机喷嘴在标准条件下显示出的高强度,为钨硬质合金强度的5~11倍。先后设计和开发了高尺寸稳定性高导热易加工电子封装复合材料制品,如印刷电路板板芯、军用功率混合电路、微波管的载体、多芯片组件等。亚微米SiC颗粒增强铝基复合材料具有高耐磨性、良好的耐高温性和抗咬合性能等特点,在高速列车刹车盘,制动盘、发动机活塞和齿轮箱等以及现已用于越野自行车上的车链齿轮具有广阔的应用前景。从前瞻性、战略性、经济性和基础性这几个角度来考虑,亚微米陶瓷颗粒增强金属基复合材料制备技术的发展符合具有高性能价格比,有待迅速实现产业化的要求趋势。本项目围绕航空航天用大尺寸关键承力结构件、光机结构件与精密仪表零件、电子封装器件、核能领域屏蔽材料等应用背景,部分研究成果已达到了国际先进水平。先后设计和开发了高尺寸稳定性高导热易加工电子封装复合材料制品;制备的亚微米碳化硼增强铝基复合材料被应用于制造核废料处理容器;应用于高速列车刹车盘,制动盘、发动机活塞和齿轮箱等。
东北大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 226 227 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1