高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
XM-XW带警示透明洗胃机制模型
XM-XW带警示透明洗胃机制模型   XM-XW带警示透明洗胃机制模型为成年人头颈及躯干上部,解剖结构精确,包括牙、舌、悬雍垂、气管、支气管、左右肺脏、食管、胃、膈、胆囊、胰腺、脾、十二指肠、结肠等结构,胸腹部外皮为透明外壳,便于观察内部解剖结构以及操作全过程。   功能特点: ■ 可实现洗胃时的多种体位:仰卧位、左侧卧位、坐位。 ■ 瞳孔示教:瞳孔缩小与瞳孔散大直观对比。 ■ 可进行鼻饲术、氧气吸入疗法、口腔护理、经口经鼻吸痰术、气管切开术后护理操作训练。 ■ 可进行胃肠减压术、胃液采集术、十二指肠引流术、双气囊三腔管压迫术操作训练。 ■ 仿真实大小的透明胃,可经口、鼻进行洗胃器洗胃、电动吸引器洗胃、胃管洗胃、洗胃机洗胃,可在操作时观察胃管进出胃腔的全过程,并能容纳300ml的液体。 ■ 带有灯光警示系统,提示胆囊的不同解剖部位。 ■ 模型使用完毕,消化道内残存液体可方便的从专用管道排出。
上海欣曼科教设备有限公司 2021-08-23
我市开展“揭榜挂帅”新机制试点工作
在征集今年首批两个重点技术需求项目后, 日前,市科技局发榜公布,诚邀省内外高校、科研院所、企业前来“揭榜”攻关。这是我市开展“揭榜挂帅”新机制试点工作迈出的第一步。
三明市人民政府 2021-03-19
中心体调控大脑皮层发育机制研究
放射状胶质细胞是大脑发育最为关键的一种神经前体细胞,分裂产生大脑皮层几乎所有的神经元和胶质细胞。所有动物细胞都有中心体,通常位于细胞核附近的细胞质中。然而中心体在放射状胶质细胞内的定位十分独特,位于远离细胞核的顶端细胞膜上,即脑室腔的表面上。这种独特的亚细胞特征已被发现数十年,但其成因及功能一直令人困惑。图1. 中心体的顶端膜锚定调控神经前体细胞机械特性和大脑皮层的大小及折叠时松海教授和史航研究员课题组采用基于透射电镜成像的连续超薄切片技术,首次观察到了放射状胶质细胞内的中心体是通过附着在母体中心粒上的远端附属物(distal appendages)锚定在顶端细胞膜上的(图1)。为了探索其分子调控机制和生理功能,研究人员在大脑皮层放射状胶质细胞内特异性地去除了远端附属物的重要构成蛋白CEP83,使得远端附属物无法形成,从而阻止中心体与细胞膜的连接。结果发现,去除CEP83蛋白后,母体中心粒上不再形成远端附属物,中心体和顶端膜发生了微小的错位,不再锚定在顶端膜上。进一步研究表明,中心体这一不足1微米的位移,不是通过影响初级纤毛的形成,而是破坏了顶端膜上特有的环状微管结构,导致顶端膜被拉伸、变硬。这一物理特性的改变引起了放射状胶质细胞内机械敏感信号通路相关的YAP蛋白(Yes-associated protein)的过度激活,从而导致了放射状胶质细胞前期的过度扩增以及之后中间前体细胞的增多,最终使得大脑皮层神经细胞显著增加,体积扩大,并引发异常折叠。论文链接:https://www.nature.com/articles/s41586-020-2139-6
清华大学 2021-04-10
非编码RNA的染色质结合机制研究
哺乳动物基因组的广泛转录产生了大量的非编码RNA,相比于细胞质定位的蛋白编码mRNA,这些非编码RNA如长链非编码RNA(lncRNA)、启动子和增强子关联的不稳定转录本(uaRNA、eRNA)等更倾向于结合染色质参与调控染色质结构、转录和RNA加工等过程。尽管零星报导少数RNA核滞留的现象,但为何大部分lncRNA会滞留于染色质上行使调控功能,仍是个不解之谜。上世纪80年代初,Joan Steitz通过系统性红斑狼疮患者血液抗体分离提取 U1,U2, U4, U5和U6小核糖核蛋白粒子(又称为 snRNP),揭示了它们参与RNA剪接的经典功能。近年来施一公团队系统报导了真核生物剪切体的原子结构和生化功能。然而,一直让人困惑的是,细胞内U1 snRNP的数量为什么比其它剪接相关snRNP高 2-5倍。虽然Gideon Dreyfuss和Phil Sharp等团队曾揭示U1 snRNP调控转录终止和方向的非经典功能,U1 snRNP在细胞中的丰富存在仍然是一个让人困惑的问题。为了探究lncRNA的染色质结合机制,研究者首先建立和运用一套新颖的mutREL-seq方法来高精度筛选调控RNA定位的关键序列,意外发现了U1 snRNP识别位点参与调控候选RNA的染色质滞留。相比于蛋白编码基因,lncRNA转录本含有更多的U1识别位点(同时也是潜在的5’剪接供体位点),而其基因组区域具有更少的3’剪接受体位点。并且U1 snRNP更高水平地结合在lncRNA上。随后,研究者分别使用antisense morpholino oligos(AMO)和auxin-induced degron(AID)诱导蛋白降解系统,来抑制U1 snRNA和核心蛋白组分SNRNP70的功能。研究者发现小鼠胚胎干细胞中近一半的lncRNA受U1 snRNP调控。另外,与转录调控元件关联的不稳定非编码转录本如uaRNA、eRNA等,它们的染色质结合在U1 snRNP抑制后也显著下降。研究者进一步证明了U1 snRNP直接调控成熟lncRNA与染色质的结合,而不是通过影响RNA合成、加工或降解过程的动态变化所产生的间接影响。机制上,研究者鉴定了U1 snRNP在染色质上的互作蛋白,发现U1 snRNP结合特定磷酸化状态的RNA转录聚合酶II(Pol II)。转录抑制明显降低了U1 snRNP及其所调控的非编码RNA与染色质的结合,表明U1 snRNP通过与磷酸化的Pol II互作来介导其互作RNA与染色质的结合。最后,研究者通过以lncRNA Malat1为例,进一步验证了U1 snRNP对其染色质结合的调控作用。去除SNRNP70后,绝大部分Malat1 “核斑”定位信号消失,并弥散在核质及细胞质中。同时,Malat1在活跃表达基因染色质区域的结合信号显著下降,表明U1 snRNP不仅可以将Malat1滞留在染色质上,同时也参与调控后者在染色质上的移动及其与靶基因的结合。综上,研究者提出如下模型(图1):5’和3’剪接位点在lncRNA上的不对称分布,致使U1 snRNP持续结合在lncRNA转录本上,而不能通过RNA剪接过程释放,从而介导了lncRNA的染色质滞留。磷酸化Pol II进一步介导了lncRNA-U1 snRNP复合体在染色质上的移动(mobilization)。对于大多数低丰度、不稳定的lncRNA,它们只能靶向结合邻近的染色质区域(顺式cis作用);而对于少数稳定和高丰度的lncRNA,如Malat1,U1 snRNP促进了其迁移和结合更多的靶基因区域(反式trans作用)。图1. U1 snRNP介导非编码RNA染色质结合的模式图。论文链接:https://www.nature.com/articles/s41586-020-2105-3
清华大学 2021-04-10
基于双库协同机制的 KDD* 新系统
该发明公开了一种基于双库协同机制的 KDD* 新系统 , 该系统是在 KDD 技术的基础上融入双库协同机制,即构建数据库与基础知识库的内在联系“通道”,从而用基础知识库去制约与驱动 KDD 的挖掘过程,改变 KDD 固有的运行机制,在结构与功能上形成了相对于 KDD 而言的一个开放的、优化的扩体。双库协同机制的引入,使得 KDD 在功能上得到了进一步的完善和提高 , 并诱发出若干新的结构模型,对知识发现系统的主流发展起着重要的推动作用。◆项目的应用范围及经济效益分析 一种基于双库协同机制的 KDD* 方法及系统 (已获国家发明专利证书 , 专利号: ZL 01145080.0 ),是在 KDD技术的基础上融入双库协同机制,即构造数据库与基础知识库的内在联系“通道”,用基础知识库去制约与驱动KDD的挖掘过程,并在KDD的挖掘过程中对知识库进行实时维护,实现了“知识与数据库同步进化”;改变与优化了KDD固有的运行机制,实现了“多源头”聚焦与减少评价量;强化并提供了知识发现的智能化程度,提高了认知自主性, 形成了知识的自动评价系统, 减少了领域专家的工作量,较有效地克服领域专家的自身局限性,实现了“采用领域知识辅助初始发现的聚焦”;在结构与功能上形成了相对于KDD而言的一个开放的、优化的扩体-- KDD*。双库协同机制的引入,揭示了在一定的建库原则下,知识子库与数据子类结构之间的对应关系,为实现“限制性的搜索”而减小搜索空间、提高挖掘效率提供了有效的技术方法,使得KDD在功能上得到了进一步的完善和提高,并诱发出若干新的结构模型和发掘、评价方法,对知识发现系统的主流发展起着重要的推动作用。 国际著名无形资产评估机构“香港国际无形资产评估事务所”品过此专利无形资产价值66万美元。   该系统是一款通用软件,具有从数据导入到知识管理、知识展示的全部功能,界面友好 ;具有多种可视化展示功能;与用户数据接口简单,不需建立数据仓库。具有良好的通用性与可扩展性;应用范围广。
北京科技大学 2021-04-11
基于双库协同机制的 KDD* 新系统
该发明公开了一种基于双库协同机制的 KDD* 新系统 , 该系统是在 KDD 技术的基础上融入双库协同机制,即构建数据库与基础知识库的内在联系“通道”,从而用基础知识库去制约与驱动 KDD 的挖掘过程,改变 KDD 固有的运行机制,在结构与功能上形成了相对于 KDD 而言的一个开放的、优化的扩体。双库协同机制的引入,使得 KDD 在功能上得到了进一步的完善和提高 , 并诱发出若干新的结构模型,对知识发现系统的主流发展起着重要的推动作用。
北京科技大学 2021-04-11
基于图形码秘密分享机制的身份认证方法
一种基于图形码秘密分享机制的身份认证方法,包括:提取第一被验证人的第一生物特征信息;将所述第一生物特征信息转化为具有符号逻辑形式的第一图形码;将所述第一图形码映射成n份影子秘密并分别将所述影子秘密存储于不同的地点;提取第二被验证人的第二生物特征信息;将所述第二生物特征信息转化为具有符号逻辑形式的第二图形码;从所述n份影子秘密中选取t份影子秘密以重构成出所述图形码;判断所述第二图形码与重构出的所述图形码是否相符合;如果符合,则判定所述第一被验证人与所述第二被验证人为同一人,否则判定所述第一被验证人与所述第二被验证人为不同的两个人。
电子科技大学 2021-04-10
关于高Tc薄膜铁电材料机制的研究
基于过去发展的基于第一性原理电子结构计算的有限温度下铁电-顺电相变模拟手段,指出Fisher等人提出的有限尺寸标度理论存在缺陷,并针对铁电-顺电相比提出修正方法。此理论缺陷存在的本质原因是理论推导过程中对体材到薄膜演变过程中哈密顿量变化的忽视,是由当时实验技术与针对具体材料物性理论模拟手段的局限造成的。新发展出来的修正方法可广泛适用于类似铁电材料的物性模拟。 研究中,以SnTe作为一个例子,来研究标度律不成立的体系;以BaTiO3为一个例子,来描述标度律成立的体系。通过对比两类材料在从体材到薄膜变化过程中电子结构与相变温度变化的规律,作者发现相变序参量的变化可以作为一个描述子,来区分此两类系统。在标度律成立的体系,体材与薄膜的相变序参量并不发生变化,这个也是70年代Fisher等人提出标度律的一个基本假设。而对SnTe这类材料,在从体材到薄膜的演化过程中,相变序参量已经发生了变化。这一机制也为寻找、预测和设计低维高Tc铁电材料提供了新思路。不同于之前研究常采用的施加应变等外部调制手段,新机制预测的低维铁电材料具备本征高Tc,更易于脱离实验室条件走向工业生产。课题组期待这一工作能激发更多高Tc铁电材料的发现。图1. 材料的相变序列(a) 满足标度律的传统铁电材料;(b) 不满足标度律的二维铁电材料;(c) 不满足标度律的一维铁电材料。当且仅当材料的低维相变序列发生改变时,标度律不成立,该材料有可能发现高Tc,即(b)(c),有待于进一步的实验发现。
北京大学 2021-04-11
植物密植条件下分枝减少的调控机制
华南农业大学亚热带农业资源保护与利用国家重点实验室、广东省省岭南现代农业重点实验室王海洋教授团队在国际著名学术期刊国际知名期刊《Nature Communications》(自然-通讯,IF5Y= 13.811) 在线发表了题为“Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching”的研究论文(论文链接地址https://www.nature.com/articles/s41467-020-15893-7),揭示了植物密植条件下分枝减少的调控机制。分枝(分蘖)数目是影响植株株型、产量和生物量的关键因素。但在密植栽培条件下,植物间的相互遮荫会诱发植物产生避荫反应,引起植株分枝(分蘖)数目急剧减少。例如,在密植条件下,水稻和小麦的分蘖数会受到抑制,从而影响单株产量。因此,生产上需要培育耐密植的作物品种以增加其群体产量。该研究团队前期研究发现植物可通过光敏色素信号途径感应密植条件下光信号的变化,调控下游miR156-SPL分子模块,进而控制植物的避荫反应 (Xie et al., 2017, Nature Communications,8,348,IF5Y = 11.831)。 此外,最近研究发现独脚金内酯是一种抑制植物分枝(分蘖)的主要植物激素。在模式植物拟南芥中, SMXL6/7/8三个同源基因编码独脚金内酯信号传导途径的关键抑制因子,当独脚金内酯信号途径被激活时,SMXL6/7/8三个蛋白会被蛋白酶体降解,从而达到抑制分枝的效果。但是目前光敏色素介导的光信号途径和独脚金内酯信号途径如何在密植栽培条件下协同调控植物分枝(分蘖)的分子机制尚不清楚。在本研究中,研究人员发现miR156-SPL分子模块的两个重要成员,SPL9和SPL15蛋白,可以直接激活下游分枝关键负调控因子BRC1的转录,从而抑制植株分枝的产生;光敏色素A (phyA) 信号通路中的两个重要信号传导因子FHY3/FAR1和独脚金内酯信号途径重要因子SMXL6/7/8都可以与SPL9/15两个蛋白互作,并抑制SPL9/15对BRC1的转录调控,从而促进植株分枝的产生。此外,研究还发现FHY3和FAR1能直接促进SMXL6和SMXL7的转录。在遮荫或密植栽培条件下,FHY3和FAR1蛋白水平下降,引起SMXL6和SMXL7的转录本和蛋白水平下降,使SPL9/15蛋白被释放出来,导致其下游基因BRC1的转录水平升高,从而抑制了植株分枝的产生。该研究首次从蛋白互作层面阐明了FHY3和FAR1通过整合植物外部光信号途径和植物内部独脚金内酯信号途径协同调控植物密植栽培条件下分枝发生的分子机制。 图注说明:拟南芥FHY3和FAR1蛋白整合植物外部光信号途径和植物内部独脚金内酯信号途径协同调控植物密植栽培条件下分枝发生2020年初,他们进一步发现,FHY3/FAR1也可以与植物年龄信号途径的三个关键因子SPL3/4/5互作,并抑制它们对下游开花基因FUL/LFY/AP1/MIR172C的激活作用,从而抑制开花 (Xie et al., 2020, Molecular Plant,13: 483–498,IF5Y = 8.489)。这些研究成果极大地完善了植物避荫反应的调控机理,同时可为耐密植作物新品种的培育提供理论指导。
华南农业大学 2021-04-11
揭示植物免疫多肽Pep家族的加工成熟机制
发现II型MC蛋白酶介导PROPEP1的加工机制,但Stael团队认为MC4是叶片中唯一介导PROPEP1加工的蛋白酶,而李剑峰团队发现包括MC4在内的多个II型MC家族蛋白酶在叶片PROPEP1的加工方面具有冗余功能。这两项研究为理解Pep信号转导在植物免疫以及其它生理活动中的功能及调控机制提供了新的认知。细菌鞭毛flg22通过受体FLS2/BAK1介导的信号转导激活PROPEP1表达,产生的PROPEP1前体定位于液胞膜表面。flg22 同时引起细胞内的Ca2+浓度升高,后者促进II型MC蛋白酶的自加工激活,进而可对PROPEP1进行加工。从液泡膜释放的Pep1进入细胞质,并通过未知的方式移动到细胞间隙,并被PEPR受体识别后激活或强化植物免疫。
中山大学 2021-04-13
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 31 32 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1