高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
教育科研利器│光固化工业级3D打印机Lux 3+
打印设备详细信息:索要完整打印设备资料请访问清锋科技官网下载 3D打印机-LuxCreo清锋科技   教育科研解决方案 3D打印作为一种新型生产方式,可以加速产品开发周期,满足多 材料、复杂形状、任意批量的生产需求,是全球最受关注的高科 技行业之一。拥有3D打印课程、设备的院校、科研机构在创新、 创造方面均有着得天独厚的优势。LuxCreo致力于推动行业发展, 为科研创新、数字化智能化转型以及行业人才培养等方面提供支 持。 打印设备 iLux系列桌面机,Lux系列工业机,可作为研发、教学、实验等配套设备,满足不同项目需求 打印材料 EM弹性材料、TM韧性材料、透明韧性材料、Dental齿科等材料,可满足消费、医疗、工业、汽车、航空航天等学科的教学研发需求 打印软件 LuxFlow模型处理软件,支持数据导入、文件修复、智能2D/3D摆放、生成支撑、切片、路径填充等功能,便于快速进行现场教学演示、培训实操、学术研发 清锋科技在3D打印技术、软硬件、材料等方面积累了来自全球各个高校的顶尖人材,可结合院校、机构所需进行相关的培训及讲座,助力教育科研工作更加系统、科学。同时,清锋科技在北京、宁波及美国硅谷均设有打印中心,可为学生及科研人员提供进一步深入了解3D打印的场地支持。 客户收益 院校 提升院校教学硬件水平,有助于培养未来的3D打印人才生动展示课本、教案内容,增加教学趣味性资深3D打印行业专家亲自授课 科研机构 快速将模型、数据形成实物,简化步骤,缩短论证时间结合最新技术,加速研发新产品,输出有价值易商业化的研发项目全球顶尖3D打印工作团队提供技术支持 Lux 3+系列 工业级 DLP光固化3D打印机 Lux 3+产品介绍 LuxCreo Lux 3+是生产级DLP 3D打印机,依托于清华、哈佛、剑桥、佐治亚理工、北卡罗纳州立等名校的光机电、材料、软件专家近10年的研发成果。Lux 3+ 3D打印机适用于快速、高精度打印原型件、测试件和小批量件。Lux 3+使用高品质4K DLP 技术,硬件结构设计方案得到了10万各种不同零部件打印的检验。基于EAPTM的高速离型技术,我们开发了弹性、坚韧、高精度、高弹、耐温、透明的材料,满足工业、医疗、科研等各领域的打印需求。Lux 3+ 可接入LuxCreo的软件生态,实现轻量化设计、高速切片、设备互联、智慧工厂管理。 清锋的Lux工业机解决方案1.增材设计软件某研究所的增材制造实验室需要设计不同的结构,有的结构需要实现轻量化、晶格化,且一次打印时放置不同的模型。清锋提供了两款可支持某研究所增材设计需求的软件:晶格创建软件LuxStudio:可以快速的选择合适的晶格单元,并生成出可打印的晶格化模型。(登录链接:https://studio.luxcreo.cn)数据前处理软件LuxFlow:具有模型修复、自动生成支撑结构和优化部件放置,以最大限度地提高生产力。2.打印速度清锋的Lux工业机是基于面曝光的增材制造技术,采用低离型力膜,同时拥有准确性、细节表现力以快速打印速度的优势的3D打印设备。打印尺寸为293*165*380mm,可打印耐温刚性部件,打印30个,只需要55分钟,极大地提高了打印速度,加快材料验证、实验迭代。案例:某科研院所,使用Lux系列打印机快速验证材料性能在采用传统的塑料3D打印工艺生产高性能部件遇到问题时,某研究所选择使用LuxCreo的Lux工业机系列塑料3D打印解决方案,评估利用新的增材制造工具进行有效、高效验证的可能性。在对 Lux工业机解决方案开展了可行性研究之后,某研究所材料开发团队确定了增材制造的生产力,并决定可以考虑采用该解决方案打印部件。 主要参数 技术 高速光固化LEAPTM 光源 DLP 4K@405nm 适用材料种类 支持坚韧、弹性、高精度、透明、耐温材料 材料性能 材料性能见材料数据表TDS 树脂在线加热 最高至45℃ 打印范围 293x165x380mm(XYZ) XY分辨率 76.5µm Z轴动态分辨率 20~150μm(取决于树脂) 波长 405nm 打印速度 ≤120cm/h(取决于树脂、模型和层厚) 软件 LuxFlow,LuxLink 智能辅助 校平,温湿度,打印状态监控,光强自动校准 设备外观 设备尺寸 850x780x1865mm 设备重量 250kg 操作环境 设备连接 2×USB, Ethernet 操作系统 Windows 10, 64-bit 文件输入 .stl,.stx 电气 200-240 V,50-60 Hz,1000W 温湿度 18 ~28 ℃;<60% 通风 请参阅 TDS 了解参考材料特性或联系技术支持 售后支持 质保 12个月 技术支持 终身技术支持 其他配置 辅助配置 UV固化箱;超声波清洗机 选配件 烤箱;废气吸收装置;料盒 关于清锋科技(LuxCreo)清锋(LuxCreo)是一家以树脂(塑料)为材料、连续液面成型的面曝光3D打印技术为核心的科技型企业。创业初年,LuxCreo便在宁波同步建立“智能工厂”。截止到目前,LuxCreo 拥有大规模的 3D 打印生产线,借助领先的设计生成软件以及高性能的 3D 打印材料,从设计、生产、运输、管理四个环节为智能制造业全链条赋能,快速满足不同规模产品开发迭代上市的需求。也正是基于智能工厂中的增材设计、设备操作和维护、车间布局和管理经验教训,清锋总结出囊括打印机、软件、材料处理、后处理、应用、实训的课程以及科研解决方案。www.LuxCreo.cn 如有合作需求或者感兴趣的产品,可以扫描下方二维码联系清锋 ↓↓↓ 公司电话:010-63941626公司邮箱:business@luxcreo.com市场电话:18614034268官方网站:www.LuxCreo.cn公司地址:北京市海淀区建材城中路27号金隅智造工场S5幢1017
清锋(北京)科技有限公司 2022-05-13
基于光固化丝蛋白水凝胶边缘封闭的一体化双层丝蛋白支架用于骨软骨再生
新生软骨与缺损周围软骨间的水平整合是骨软骨修复中常被忽略的问题,也是软骨修复成功的关键。
科技部生物中心 2022-04-12
UV固化抗菌涂料
UV固化涂料已经成为较为成熟的技术,特别是随着人们环保意识的提高,生产和研究人员更加注意UV固化涂料的开发和应用。UV固化涂料是一种绿色环保型涂料,它完全符合“4E”原则,一般UV固化能耗为热固化的1/5,且UV固化涂料含挥发组分较少,污染小,最吸引研究人员和开发商的是UV固化涂料能减少原材料消耗,有利于降低经济成本。目前的UV固化材料各种各样,但是还是不同程度的存在着一些问题,现有的UV固化涂料经光固化后收缩率大、产生收缩应力, 导致涂膜性脆、附着力和耐冲击力差、以及涂膜的柔韧性差和硬度低、不耐腐蚀、易黄变老化等缺点,这一系列问题都需要针对不同的用途继续改良,降低生产成本,扩大用途。 本技术提供一种专用UV固化抗菌涂料及其制备方法。本技术的有益效果是:配方中添加IPBC抗菌物质,具有抗氧化,抑霉变的作用;添加助剂,流平性好,使涂料具有良好的柔韧性、硬度、附着力、耐磨、耐刮擦,节能环保,生产效率高,适用于塑料表面。该涂料可以采用滚涂、喷涂的施工方式进行施工。按以上方案制得的涂料涂装在木板上附着力都好于二级,耐75%乙醇24 小时以上,耐碱24小时以上、耐酸48小时以上,耐受零下40 度和40度的冷热循环10 次不发生开裂,耐15%食盐水60 小时以上,硬度可在2HB 到3H 间调节,耐磨指数在4000转以上。
北京化工大学 2021-02-01
快速固化光敏胶
内容介绍: 该类胶粘剂对玻璃、金属、木材纸质基材具有很好的粘接性,对一些 塑料制品也具有一定的粘接性,可用于这些材料的粘合。在500W以上功 率的紫外光照射下,可以在30s-2min内迅速固化。性能指标:
西北工业大学 2021-04-14
UV固化粉末涂料
近年来国外对UV固化粉末涂料的研究开发日趋活跃,部分产品正开始走向市场,世界上 第一条商业化UV粉末涂料生产线于1998年出现在美国的Baldor电子公司,应用于电子马达的涂 装。 UV固化粉末涂料是一项将传统粉末涂料和UV固化技术相结合的新技术,因此具有以下明 显优势: (1) UV固化粉末涂料的涂层在熔融和流平阶段不会发生树脂的早期固化,从而为涂层充分 流平和驱除空气操作提供了充裕的时间,这样就从根本上克服传统热固化粉末涂料的缺陷。 (2) UV固化粉末涂料采用紫外光辐照固化,可以使加热和固化过程的温度低至 100~120℃,大大低于传统的热固化粉末涂料的使用温度,且采用紫外光照,固化耗时只有数 秒钟,加快生厂线的速度,提高生产效率,降低能耗。 (3) 相对低的固化温度可以避免对基材的过分加热,大大拓展了粉末涂料的应用空间。 (4) UV固化粉末涂料使用100%固体漆,零VOC排放,其转化效率达95%,过量喷涂的粉末 可以回收再利用,因而具有较高的材料利用率,节省生产成本。 适用于光固化粉末涂料的树脂,首先要具有较高的光引发聚合活性;要求树脂能赋予粉末 涂料良好的储存稳定性;在固化条件下具有较低的熔融粘度,以保证粉末涂料在光固化之前和 光固化过程中具有良好的流动和流平性能。 本项目通过分子设计制备了一种具有结晶结构的聚酯树脂,所合成的光固化聚酯树脂具有 良好的流平、储存等性能;所制得的粉末涂料在UV光照5秒成膜后,涂膜综合性能优良,正、 反冲击性能达到50kg/cm,附着力达到0级
华东理工大学 2021-04-11
水性聚氨酯固化剂
成果(技术)简介:目前水性聚氨酯(包括涂料、黏合剂等)的应用很广。 但普遍存在强度、硬度不大和弹性、耐温性差等不足,限制了其在更广的范 围内使用。水性聚氨酯固化剂采用多异氰酸酯与水溶性材料结合的工艺,使其能完全溶解在水中,并可以使得水性聚氨酯综合性能提高。 项目来源:自行开发 技术领域:新材料技术 主要技术特点: 1.外观 无色透明乳液 2.异氰酸酯含量 大于 17% 3.粘度 小于 10omPa·s
北京理工大学 2021-04-14
水性聚氨酯固化剂
成果(技术)简介:目前水性聚氨酯(包括涂料、黏合剂等)的应用很广。 但普遍存在强度、硬度不大和弹性、耐温性差等不足,限制了其在更广的范 围内使用。水性聚氨酯固化剂采用多异氰酸酯与水溶性材料结合的工艺,使其能完全溶解在水中,并可以使得水性聚氨酯综合性能提高。 项目来源:自行开发 技术领域:新材料技术 主要技术特点: 1.外观 无色透明乳液 2.异氰酸酯含量 大于 17% 3.粘度 小于 10omPa·s
北京理工大学 2021-04-14
陶瓷墨水
成果与项目的背景及主要用途: 陶瓷墨水就是含有某种特殊陶瓷粉体的悬浊液或乳浊液,通常包括陶瓷粉 体、溶剂、分散剂、结合剂、表面活性剂及其它辅料。利用 PÜHLER 纳米研磨 机可将无机颜料喷墨技术功能性的陶瓷墨水打印在陶瓷砖上,实现建筑陶瓷的个 性化和功能化。 技术原理与工艺流程简介: 反相微乳液法制备高溶度 ZrO2 陶瓷墨水。反相微乳液制备陶瓷墨水,得到 粒度均匀的纳米微粒和最大溶水量时的最佳组分配比,乳化效果最好,溶水量佳。 同时利用反相微乳液法制备出了非水相 ZrO2陶瓷墨水。成型后快速干燥, 获 得均匀、致密堆积的陶瓷坯体。此方法通过设计体系的组成,绘制不同组分配比 和不同温度时的体系拟三元相图,计算出最佳组成的质量分数和温度的控制范 围。陶瓷墨水透明稳定,目前质量浓度可达到 1.4% ,粒度 20nm 左右,高度分散, 表面张力、粘度等指标均满足间歇式喷墨打印机的技术要求。 应用前景分析及效益预测: 相比丝网印刷和辊筒印刷技术,喷墨印刷拥有着生产流程更简单、产品生产 周期缩短、花色纹理更加逼真丰富的有点。 陶瓷喷墨打印成型技术是一种把计算机辅助制造(CAM)应用于陶瓷成型中 的 新技术。它是在计算机控制下多层打印逐层叠加制出三维陶瓷坯体。它在复 杂单体陶瓷制造、有序成分复合材料制造,固体氧化物燃料电池制造等方面有很 好的应用前景。 按中国陶瓷喷墨打印机最终市场容量 3000 台,当前陶瓷墨水平均价格 13 万元/吨,每台陶瓷喷墨打印机机使用的墨水量 8-12 吨/年来计算,未来国内陶瓷 墨水市场价值为 31.2-46.8 亿元/年。 应用领域: 喷墨印刷技术被广泛应用到瓷片、全抛釉、仿古砖、微晶石、薄板等产品中。 合作方式及条件天津大学科技成果选编 技术合作与专利转让 
天津大学 2021-04-11
柔性陶瓷
项目成果/简介: 陶瓷具有耐高温、耐腐蚀、耐磨损、耐老化、抗压强度高等诸多优点,但有一个致命的缺点——脆性。柔性陶瓷材料作为一种新型材料,在通讯、电子、医学、航空、航天、军事等高技术领域都被广泛应用。如电子计算机的高速硬盘转动系统需要柔性陶瓷轴承;导弹、火箭发射装置的关键部件如透波、鼻锥等要用耐高温和抗氧化能力极强的柔性陶瓷做天线罩,才能承受高温气流的冲刷、摩擦 研究团队通过对纯钛酸铝原料制备钛酸铝柔性陶瓷技术的改进,以TiO2、Al2O3为原料,辅以Fe2O3、MgO、SiO2等添加剂,通过固相反应、固相烧结制备出柔性钛酸铝陶瓷。能够降低烧结温度,且制备的钛酸铝陶瓷具有更高的强度和柔性。将其制备成具有柔性的钛酸铝陶瓷材料,将有传统陶瓷材料没有的特性,并且能够进一步提高其抗热震性,使得柔性钛酸铝陶瓷能应用于更为苛刻的环境中,并且在工业生产中用途更广、市场大、前景好。可弯砂岩可弯砂岩微观结构图知识产权类型:发明专利技术先进程度:达到国内领先水平成果获得方式:独立研究获得政府支持情况:无
华南理工大学 2021-04-10
透明陶瓷
透明陶瓷作为一种新型的光学材料,兼具单晶和玻璃两者的优势于一体,具有良好的热物理性能、机械强度和耐腐蚀性。通过合适的稀土离子掺杂,可实现不同的光功能特性。透明陶瓷制造工艺简单,成本低廉,具有高浓度掺杂和高光学质量的优势,可以大尺寸、大批量生产。在高功率固体激光、白光LED照明、核医学和高能物理探测、国防武器装备等领域均具有其他材料不可替代的应用优势,具有广阔的市场前景。
江苏师范大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 31 32 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1