高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
同色透芯陶瓷台面
Name:TOOK Ceramic Core Worktops Type:TOOK F08 Color: Multiple colors available   Historic Breakthrough :TOOK Ceramics Core l Utilizing TOOK advanced technology and exclusive formulation, TOOK Ceramics innovations made a historic breakthrough by developing the first ever [homogenous / monolithic] ceramic core countertop.  This innovation brings forward the first uniform colored ceramic countertops which enables size customization with zero wastage thus creating higher commercial value and flexibility. lTOOK Ceramics Core eliminates post-fabrication glazing, enabling site fabrication which enhances on-time delivery while mitigating unforeseen site dimensions.  Elimination of exposed edges increases overall aesthetics and brings clarity of the lab overview.
陶克基业(北京)科技有限公司 2022-04-18
插接式指引导管及应用其的介入治疗设备
相关专利提出了一种新型的指引导管,用于冠脉介入治疗时方便更换介入导管。
天津医科大学 2021-02-01
动量空间成像光谱设备的研制与产业化应用
复旦大学光子晶体课题组长期聚焦光子晶体等微纳光子材料的光场调控研究和针对微纳材料和器件的先进光学量检测技术的开发和应用,与上海复享光学股份有限公司合作在基础创新、技术突破和产学研转化方面取得了一系列成果。 一、项目分类 显著效益成果转化 二、成果简介 当今,光,作为几乎所有远程探测的手段和信息传播的媒介,对光的多维度测量分析和自由调控,既直接关系到未来信息收集、处理和传输的灵敏度和速率,也与先进微纳制造的精度、效率和能耗等诸多国家核心技术的竞争力息息相关。 复旦大学光子晶体课题组长期聚焦光子晶体等微纳光子材料的光场调控研究和针对微纳材料和器件的先进光学量检测技术的开发和应用,与上海复享光学股份有限公司合作在基础创新、技术突破和产学研转化方面取得了一系列成果。 在基础创新方面: ①动量空间光学测量思想:光与微纳结构的相互作用遵循频率-动量色散关系,也被称为光子能带。在原理上,类似于半导体利用其电子能带操控电子,光子晶体等微纳光子材料也可以通过光子能带操控光。而光子能带的本质存在于动量空间。相比于已经商业化的可探测固体材料动量空间中复杂电子能带的多维度角分辨光电子能谱设备,针对光子晶体等光子材料动量空间中光子能带的多维度光谱测量技术和设备在全世界尚属空白,亟需发展。团队突破了传统光谱测量思路,提出了从动量空间视角量检测微纳光子器件光学性能的思想。 ②适合微纳尺寸器件的动量空间成像技术:微纳尺寸的测量依赖显微镜。但显微技术在追求实空间分辨率的同时丧失了动量空间的分辨能力。此成果将傅里叶光学技术与显微技术相融合,解决了动量空间成像的像差和色差问题,实现了实空间和动量空间的双高分辨率。 ③多维度光学信息提取:相位和偏振态是可供光子器件信息调制的新自由度。团队将时域外差干涉技术延拓到具有显微分辨能力的动量空间外插干涉技术,单次成像实现了在光波长尺寸内40毫弧度的相位测量精度。同时,建立了适合于动量空间成像测量技术的耦合模理论,实现了在非相干的白光照明下任意椭圆偏振态的测量。 ④光学量测中国解决方案:处于芯片产业上游的微纳制程光学量测环节,是芯片良品率控制的关键。在此关键领域,我国远远落后于国际先进水平。动量空间成像光谱技术所采集的多维度光谱信息富含微纳结构的三维形貌信息。团队提出并实现了基于动量空间成像光谱技术的全新光学微纳制程量测新原理和新技术。该原理利用深度神经网络构筑了微纳米尺度结构与动量空间色散的构效关系和映射。同时,由于在所测量的色散关系中包含了冗余的结构信息,因此在实际技术应用中极大优化了量测逆问题中测量噪音带来的病态问题。 ⑤相关成果:团队以通讯作者发表1篇Nat.Photon.,1篇Nat.Commun.,3篇PRL,4篇Light:Sci.&Appl.,1篇Sci.Bull.,1篇Light:Advanced Manufacturing等国内外高水平期刊论文。动量空间成像光谱技术使动量空间得以被直接实验观测,并成为发现新光场调控机制的眼睛。团队利用此技术首次实验揭示了动量空间中存在具有拓扑奇点的偏振场,提出了动量空间中光场调控的新思路,开辟了光子晶体在全偏振态、涡旋光束生成和光束位移操控方面的新应用。由于周期性光子晶体无几何中心,因此不需光学对准,具有应用价值,成果被评为2020年度中国光学十大进展,入选ISI高被引论文。日本NTT首席科学家Notomi在Nat.Photon.上以"动量空间中的拓扑成真"为题对团队工作进行专题报道,给予高度评价。 在技术突破方面: ①在国际上首次实现了广谱符合阿贝正弦关系的动量空间成像光谱设备。其中动量分辨率小于1.7毫弧度,实空间分辨率小于600纳米,相位分辨率小于40毫弧度,最大偏振度误差小于1%,波长分辨率小于0.1纳米。 ②结合产业需求和动量空间成像光谱技术的优势,提供了一系列产业问题的分析解决方案,包括利用动量空间偏振依赖的辐射分布量测发光分子三维取向分布和利用动量空间光子色散关系逆向量测微纳结构纳米精度的三维形貌等。实测结果达到亚纳米分辨稳定性和98%以上的置信度,测量膜厚与计量认证厚度差异小于5埃。 ③相关成果授权发明专利9项,在申请PCT国际专利2项。
复旦大学 2022-08-15
一种有机/无机复合纳米线过滤膜的制备方法
本发明公开了一种有机/无机复合纳米线过滤膜的制备方法。包括如下步骤:将金属盐溶解在乙醇胺的水溶液中制备金属氢氧化物纳米线;将肝素溶液加入到金属氢氧化物纳米线溶液中,制备核壳结构复合纳米线溶液;将聚合物多孔膜固定在过滤容器中,膜面朝上,过滤容器中加入核壳结构复合纳米线溶液,减压过滤;干燥。本发明将荷负电的肝素通过静电作用固定在荷正电的金属氢氧化物纳米线表面,形成以纳米线为核,以肝素为壳的核壳结构复合纳米线,再通过动态制膜法,将复合纳米线沉积在聚合物多孔膜表面,形成具有抗菌性和血液相容性双重功效的有机/无机复合纳米线滤膜。纳米线直径小,负载时形成的孔径小,孔密度高,制备工艺简单、成本低。
浙江大学 2021-04-11
垂直碳纳米管/聚合物复合纳滤膜的制备
发展了垂直碳纳米管/聚对二甲苯复合纳滤膜的制备技术,并对其气体及液 体输运性能进行了系统研究。
上海理工大学 2021-01-12
一种高水通量薄层复合纳滤膜及其制备方法
本发明属于分离膜技术领域,更具体的说是一种高水通量薄层复合纳滤膜及其制备方法。一种高水通量薄层复合纳滤膜的制备方法包括:(1)配制含有一定浓度磷酸盐的多元胺单体水溶液,并静置一段时间;(2)以步骤(1)所述的水溶液充分浸润多孔底膜表面,待底膜表面晾干后,向底膜表面加入一定浓度多元酰氯的有机相溶液进行界面聚合反应生成聚酰胺活性分离层,并经过洗涤、后处理即得所述高水通量薄层复合纳滤膜。所述薄层复合纳滤膜包括多孔底膜和聚酰胺活性分离层。提供的薄层复合纳滤膜具有水通量高、抗生素截留率高、单价盐透过率高的特点。
南京工业大学 2021-01-12
设备状态检修及风险预警
改变设备定期检修的错位现象(该检修的不检修,不该检修的使劲检修),实时采集现场设备运行数据及工况数据,以AI模型评价设备状态并预警未来风险,实现精准检修,节省成本并提高安全性,保障生产线满足生产机交货需求,减少零部件储备量。
重庆邮电大学 2025-02-21
金属/陶瓷层状结构复合材料锌液内加热器及陶瓷锌锅
发明了一种新层状结构复合材料,由其制造锌液内加热器的外套管材料解决了耐腐蚀和机械性能一统的材料难题。因此,由此材料制造的新型锌液内加热器可以解决所有尺寸锌锅的内加热问题。配以陶瓷锌锅就可以彻底解决传统铁制锌锅的寿命短,锌渣多,镀锌质量不好的问题。资金需求: 配合生产线的关键设备,投资建厂,兴建年100万千瓦能力的装备,投资2亿元。产值10亿元,利润5亿元。可出让的股份比例:是
河北工业大学 2021-04-13
酸性硅溶胶的应用
酸性硅溶胶,又称硅酸水溶胶,是一种高分子二氧化硅微粒分散于水中的胶体溶液。
东莞市惠和永晟纳米科技有限公司 2025-03-27
朔州陶瓷职业技术学院
(null)
朔州陶瓷职业技术学院 2021-02-01
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 379 380 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1