高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
橡胶交联密度 核磁共振交联密度成像分析仪
产品详细介绍产品简介:  核磁共振交联密度成像分析仪主要用于聚合物交联密度测试以及核磁共振成像研究。交联密度的测试原理主要是根据聚合物中碳氢链质子的分子动力学,利用交联结构的磁共振响应来有效地评价聚合物(如橡胶、塑料等)的交联密度,分析聚合物在研发与生产过程中的结构演变,据此进行硫化参数的优化、橡胶制品的质量验证、老化过程分析研究、疲劳寿命预测、橡胶及其它弹性体中水分和溶剂含量测定等。采用此种方法评价橡胶的交联结构,技术上快速便捷(30秒~5分钟)、测试过程对样品无任何损害、重现性好、信息量大,而且可以将化学交联和物理交联区分出来。核磁共振交联密度仪提供了一种全新的交联测试手段,与传统的测试结果有很好的相关性,优势明显。技术指标:1、磁体类型:永磁体;2、磁场强度:0.5±0.08T,仪器主频率:21.3MHz;3、探头线圈直径:10mm;4、样品控温范围:30-130℃; 应用解决方案:1、测量任何种类交联的聚合体(尤其是橡胶,橡胶产品)的交联信息;2、聚合体生产的质量控制和质量保证;3、使用过的聚合体材料老化过程的品质鉴定;4、基于橡胶的硫化,处理和生产条件优化的研究;5、固体,半硬的聚合体,凝胶体,乳状液和液体的分子活动性研究;6、固体基质中水分和水含量的成像和测定(例如:环氧树脂和半导体器材);7、环氧树脂和橡胶的硫化过程中硫化状态、粘度和过程的探测;8、样品中水或溶液粘合性和活动性的研究;9、聚合物中增塑剂或橡胶含量的测定;10、共混物或共聚物中橡胶含量测定;11、共聚物相对含量测定;12、橡胶胶乳中的固体含量测定;13、临界水及水合作用的研究;14、流变学的的研究,如粘性、密度、及材料的稳定性;应用案例一:橡胶疲劳、老化测试:应用案例二:磁共振测试方法与传统溶胀法测试对比注:仪器外观如有变动,以最新款为准。
上海纽迈电子科技有限公司 2021-08-23
祼鼠筋肉含量 小动物体成分分析与成像
产品详细介绍产品简介:   MiniQMR清醒小动物体成分分析与成像系统适用于测量活体小鼠、大鼠及其他动物体内全组分的台式核磁共振成像分析仪,可快速、无损准确的测量动物脂肪、水分、瘦肉含量,并提供成像功能,进行脂肪分布研究。  MiniQMR清醒小动物体成分分析与成像系统(动物脂肪/代谢测量仪),是基于核磁共振(NMR)原理的分析技术。不同组织中H质子含量以及H质子的弛豫时间均有一定的差异,可通过核磁共振信号强度与弛豫时间差异,用特定的信号处理与算法将脂肪、水分、瘦肉含量快速的区分开来。该方法可在小动物清醒状态下完成测试,测试过程对动物没有伤害,可对同一动物模型进行长期持续研究,排除个体差异影响。该仪器可用于从事糖尿病、肥胖症、代谢研究和营养学的科研机构、相应的大学和制药公司。技术指标:1、磁体类型:永磁体;2、磁场强度:0.5±0.08T,仪器主频率:21.3MHz;3、探头线圈直径:60mm;应用领域:1、肥胖研究2、糖尿病3、营养学研究4、药理学5、骨质疏松症6、心脏病学等研究仪器优势与功能:1、脂肪含量测定2、瘦肉含量测定3、自由水含量测定4、脂肪分布成像5、几分钟内检测全身的肌肉、脂肪和水分含量6、适合不同体位的测试,放样对测试无影响7、永磁体,无维护费用,使用成本低8、适用于裸鼠、小鼠和大鼠9、测试过程无损伤,对动物无风险10、动物可在清醒状态下测试,无需麻醉,测试过程简单应用案例一:快速测定老鼠脂肪,瘦肉含量应用案例二:脂肪分布-核磁共振成像测试应用软件注:仪器外观如有变动,以产品技术资料为准。
上海纽迈电子科技有限公司 2021-08-23
大数据交易应当重视和研究的几个问题
《大数据交易应当重视和研究的几个问题》指出,为了保证交易数据来源的正当性和交易主体的合法性,为了有效克服大数据交易中的问题和风险,对于数据这种新型特殊财产的权属、开发利用及流转的特殊规律应当抓紧研究,相关制度建设要及时跟进。该报告建议从两方面入手:一是从私法角度明确数据的财产性质及其权属分配规则。在充分保护人格权和商业秘密的基础上,将数据产权按价值贡献在被采集者、采集者以及数据加工者等相关主体之间进行合理分配。二是从公法角度明确关于数据采集、加工,大数据产品的开发、流转等的监管规范。要明确数据的采集和利用不得违背公认的社会道德和善良风俗;在不损害相关主体的合法权益和公共利益的前提下,推动政府数据公开共享;禁止有可能威胁国家安全的跨境数据流动。
中央财经大学 2021-02-01
中国区域高分辨率气象驱动数据集
清华大学地球系统科学系阳坤教授课题组在《科学数据》(Scientific Data)上发表题为“The first high-resolution meteorological forcing dataset for land process studies over China”的研究成果,发布了过去十年间阳坤团队开发的一套服务于陆面、水文、生态等地表过程模型的中国高时空分辨率气象数据集。该数据采用严格的数据质量控制,统一的站点数据、卫星数据和再分析数据的融合方法,避免了不同学者对同一研究区域气象数据的重复处理。近地面气象数据是地表模型的主要驱动。自2004年美国国家航空航天局(NASA)发布全球陆面数据同化(GLDAS)气象数据以来,北美、欧洲等区域高分辨率气象驱动数据集也不断涌现。阳坤教授团队自2008年起利用中国气象局数据共享的契机,开始了中国区域高分辨率气象驱动数据集的开发,建立了气象数据的预处理系统和融合系统,完成了首套相对稳定可靠的长时间序列数据产品。该数据集覆盖了中国陆地区域,时间跨度为40年(1979-2018),空间分辨率0.1度,时间分辨率3小时,包括了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等 7 个变量。基于独立站点数据的评估表明,该数据集较国际上广泛使用的 GLDAS 数据集具有更高精度。目前,该中国区域高分辨率气象驱动数据集已发布在国家青藏高原科学数据中心,可免费获取。原文链接:https://www.nature.com/articles/s41597-020-0369-y数据网址:https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
清华大学 2021-04-10
新冠病毒大数据交叉学科研究平台
日前,国防科技大学系统工程学院大数据与复杂网络研究团队同四川大学、电子科技大学一起,组建新冠病毒大数据交叉学科研究平台,助力新型流行病研究和防控,给多个省份和国家有关部委等提供了8份数据分析报告和决策建议报告,为防控和战胜疫情贡献出了科学智慧。国防科技大学系统工程学院大数据与复杂网络研究团队基于新冠病毒大数据交叉学科研究平台,利用海量多源异构大数据,结合疫情发生发展规律,对人群流动及传播风险进行了综合建模和分析,为政府决策提供了参考依据。特别是团队通过分析春运期间人口流动大数据,建立起疾病传播模型,测算出了疫情扩散蔓延阶段武汉市向全国各地区的输出人口状况和新冠病毒感染的风险指数。还有许多研究人员尝试通过客运数据,研判各个地区及城市的感染风险。也有学者采用“百度迁移”所提供的人口流动数据,通过春运期间从武汉流向全国各省市的人口规模(不包含港澳台数据)和全国感染病毒人数的可视化分布,直观解读两者间的联系。同时加以推断,武汉封城之后,二次传染所造成的病毒传播将日趋占主导地位,传播程度和各省市的人口密度以及管控措施等密切相关。
电子科技大学 2021-04-10
基于138名新冠肺炎病人临床数据的研究
这项研究收集了2020年1月1日至1月28日期间,中南医院收治的138名新冠肺炎病例数据,其中40名(29%)医护人员和17名(12.3%)住院病人受到院内交叉感染。受感染的医护人员中,31人在普通病房工作,7人在急诊部门,2人在重症监护室。 武汉中南医院的这项单中心病例分析成果,清楚阐释了新冠肺炎的临床特征和治疗经验,为抗“疫”阻击战取得进一步胜利打下坚实基础。同时,研究证明“超级传播者”存在的可能性和病毒不可小觑的侵袭力,全员警戒一刻不容松懈,尤其要求一线的医护战士得到最严格的防护武装。
武汉大学 2021-04-10
玻璃与混凝土火灾现场痕迹图谱数据库
火灾事故调查是是一项技术性、政策性、规范性、法律性和时效性都很强的工作。由于火灾现场的千差万别,火灾调查这一专业执法工作所涉及的知识面特别广泛,在现场勘查过程中遇到的专业问题又相互交织在一起,加之建筑新材料、新工艺、新技术、新产品的不断涌现,使得火灾现场典型痕迹的发现和识别显得尤为重要。本课题选题从消防部队实际需求出发,以实际火灾现场中的痕迹为主要研究对象,收集提炼玻璃和混凝土等常见材料在火场高温条件下的痕迹特征,以解读痕迹形成的过程和规律,为火灾调查工作的开展提供有力支撑。
中国人民警察大学 2021-05-03
基于AI技术的通用网关及数据管理平台
本项目研发了一套完整的现场数据采集服务支撑技术,提供了数据采集集成服务的商业运营新模式。针对工业互联网建设过程中普遍存在的现场数据采集需求,整合了综合感知、AI智能处理、网络安全传输、数据质量管理和标准化输出等多个环节,把经过质量分析和标准化处理后的实时数据,作为产品对接到工业互联网应用平台的数据池,供后续数据处理和应用分析。整套技术包括4大模块:1)智能网关:基于具有AI能力CPU的智能网关,完成对多种传感信息的有效采集,并安全传输给数据前置云服务器;重点研究基于小目标的AI图像分类算法。2)AI模型管理系统:实现对智能网关中视觉AI感知中的模型计算和管理,该系统可以统一部署也可以部署的用户指定的内网服务器中。3)数据管理和标准化处理:数据有效性管理、数据质量评估、数据标准化和数据安全机制。4)智能运维:开发一套基于移动APP的智能运维系统,为运维人员提供有效帮助,提高效率、降低成本、保证系统运行质量和数据的有效性。 如图所示,项目完成了对于现场数据的传感、传输、管理、输出和设备运维等一系列工程实现。应用范围: 1、智能网关: 开发基于具有AI能力CPU的智能网关,完成对多种传感信息的有效采集,并安全传输给数据前置服务器。 综合接入能力: 包括有线传感器和特定的无线传感器、与现有系统的对接 有效感知能力: 实现基于图像的AI视觉感知能力,重点研究基于小目标的图像分类算法 安全传输能力: 提供4G、5G、NB-IOT的上行传输模块化替换 提供安全的加密手段,保证数据安全 现场调试配置能力: 具有现场WiFi调试功能,方便安装和运维人员现场配置和检测 软件和通信标准版本现场升级 2、AI模型管理系统 需要实现对智能网关中视觉AI感知中的模型计算和管理,该系统可以统一部署也可以部署的用户指定的内网服务器中。 样本管理能力 原始样本管理、样本实例库分类和管理、检测样本管理等 模型计算和管理 算力管理:对算力的统筹,外部算力的对接等 算法管理:自主开发算法的管理和调动,外部算法的调用和对接 模型管理:包括模型的功能属性和已经应用的情况的统计分析 设备管理 设备的AI模型配置能力、AI推演过程的监控、AI推演结果的跟踪采集和分析 3、数据管理和标准化处理 数据有效性管理 监测数据是否按时上传、上传数据是否符合要求、是否为非法数据 告警输出:把告警信息进行分类,并推送给相关的运维系统 数据质量评估 按照标准对现场采集数据进行多维度的质量分析,为后续数据应用提供参考依据 数据标准化 格式标准化:完善采集时间、地点、单位等属性, 输出标准化:按照标准协议与工业互联网平台数据池进行对接 数据安全 区域性部署:可以应用户要求部署在其内网 并行部署:可以通过并行部署,网关上联多个服务器,确保用户的可靠性需求 数据回滚能力:可以应工业互联网平台要求对数据进行一定期限内的回滚,保证数据在一定时间段内不丢失 4、智能运维 开发一套基于移动APP的智能运维系统,为运维人员提供有效帮助,提供效率、降低人员成本、保证系统运行质量和数据的有效性。 运维人员管理 对运维人员的信息、定位、工作状况管理 巡检任务管理 对部署的硬件和相关工作环境定期巡查的任务制定、下发、执行过程和结果的记录和管理 临时故障处理 对系统自动告警和现场突发状况的应急处理能力,包括人员调配、处理流程提示和建议、相关情况处置参考案例、后续统计追踪等。网关核心板实物照片
北京邮电大学 2021-04-10
分层检测空移键控传输系统接收端数据检测
包括以下步骤:第一步、确立接收端模型;第二步、化简接收端模型;第三步、通过分层检测算法解调出发送的数据。本发明的基于分层检测的空移键控传输系统接收端数据检测方法,其误码(BER)性能随着搜索半径的增加逐渐逼近最优检测算法(ML),当搜索半径为发送端天线数目时,本发明的检测算法等价于最大似然检测算法。本算法通过对每层进行计算排序使得在较小的搜索半径下可获得接近最优检测算法的误码率性能,因此本发明能在获得较好性能的同时,大幅度降低接收端算法的复杂度。
电子科技大学 2021-04-10
基于大数据的能源互联网能量管理系统
随着电网数据规模越来越大,所蕴含的价值也越来越多。清华大学信研院研发了基于机器学习方法的能源互联网能量管理系统,主要功能为对电网的稳定性进行预测和可视化。系 统分为训练部分和预测部分。训练部分通过历史数据进行机器学习,建立一个电压稳定性的 分类器。分类器训练完成后,再对新增的未知数据进行预测。训练部分主要分为特征提取、 类别标记、特征压缩、分类器类型选择。预测部分主要分为分类器数据启动阶段和预测输出 阶段。本系统提出利用机器学习方法对电网电压稳定性进行预测,进一步综合多个节点给出 电网态势感知的评估结果。在训练每一个节点分类器的时候,本系统将特征选取的时段和预 测时间节点拉开,形成一种延时的预测方法,本发明对复杂系统有着更好的还原效果。2 应用说明本系统实施电压稳定性预测的具体步骤为:步骤 1:通过部署在关键测点的同步相角测量单元 PMU 采集电网实时数据,所述 实时数据包含电网中每个关键测点的电压 U、 有功 P、无功 Q、电流 I;分别计算 U 的衍 生量 dU/dt,Q 的衍生量 dQ/dt,电压的变化 量比上无功的变化量的衍生量 dU/dQ,用这 些衍生量作为特征,来表征量的时间变化速 率;步骤 2:对步骤 1 中提取的特征进行数 据降维与压缩;根据特定时刻电压 U 是否恢 复到标准值的 0.8 倍来区分每组样本组是否 稳定,用 0 标记稳定,用 1 标记不稳定;步骤 3:选择分类器,建立一个电压稳 定性的分类器;步骤 4:训练分类器;当分类器训练完 成后,将训练好的参数储存起来;步骤 5:进入预测部分的数据启动阶段, 填充特征矩阵,没有输出;步骤 6:把多个节点的特征按照顺序排列,形成特征矩阵;特征矩阵填充完成后, 根据分类器给出的预测结果;特征时段向前滑动,最初的特征被抛弃,新特征补充在队尾, 分类器持续给出预测结果;步骤 7:每隔一定时间间隔 ,要把新收集来的数据与以前的数据一起,重新回到步骤 4 训练分类器,更新参数。在具体系统搭建过程中,我们充分利用现有机器学习平台。其中 Hadoop 的文件管理系统 HDFS 负责数据存储;Spark 负责模型训练;Storm 负责在线预测;Kafka 负责在 Storm 和Hadoop 之间传递更新后的模型参数。
清华大学 2021-04-11
首页 上一页 1 2
  • ...
  • 42 43 44
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1