高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
植物表型成像分析系统(植物自动传送版)
产品详细介绍 PlantScreen植物表型成像分析系统(植物自动传送版)   PlantScreen植物表型成像系统由捷克PSI公司研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、自动条码识别管理、RGB真彩3D成像、自动称重与浇灌系统等多项先进技术,以最优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。作为全球第一家研制生产植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,大面积叶绿素荧光成像分析功能使PlantScreen成为植物表型分析与功能成像分析的最为先进的仪器设备,使植物生长、胁迫响应等测量参数达100多个。 左图为整套PlantScreen系统,中图为成像室,右图为成像室中的玉米 PlantScreen系统包括如下成像分析功能:   1. 叶绿素荧光成像分析:单幅成像面积35x35cm,成像测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数 2. RGB成像分析:成像测量参数包括: 1) 叶面积(Leaf Area: Useful for monitoring growth rate) 2) 植物紧实度/紧密度(Solidity/Compactness. Ratio between the area covered by the plant’s convex hull and the area covered by the actual plant)   3) 叶片周长(Leaf Perimeter: Particularly useful for the basic leaf shape and width evaluation (combined with leaf area)) 4) 偏心率(Eccentricity: Plant shape estimation, scalar number, eccentricity of the ellipse with same second moments as the plant (0...circle, 1...line segment)) 5) 叶圆度(Roundness: Based on evaluating the ratio between leaf area and perimeter. Gives information about leaf roundness) 6) 叶宽指数(Medium Leaf Width Index: Leaf area proportional to the plant skeleton (i.e. reduction of the leaf to line segment)) 7) 叶片细长度SOL (Slenderness of Leaves) 8) 植物圆直径(Circle Diameter. Diameter of a circle with the same area as the plant) 9) 凸包面积(Convex Hull Area. Useful for compactness evaluation)   10) 植物质心(Centroid. Center of the plant mass position (particularly useful for the eccentricity evaluation)) 11) 节间距(Internodal Distances) 12) 生长高度(Growth Height) 13) 植物三维最大高度和宽度(Maximum Height and Width of Plant in 3 Dimensions) 14) 相对生长速率(Relative growth rate) 15) 叶倾角(Leaf Angle) 16) 节叶片数量(Leaf Number at Nodes) 17) 其它参数如用于植物适合度估算的颜色定量分级、绿度指数(Other parameters such as color segmentation for plant fitness evaluation, greening index and others) 3. 高光谱成像分析(选配),可成像并分析如下参数: 1) 归一化指数(Normalized Difference Vegetation Index (NDVI)) 2) 简单比值指数(Simple Ratio Index, Equation: SR = RNIR / RRED) 3) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI1), ?Equation: MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)]) 4) 最优化土壤调整植被指数(Optimized Soil-Adjusted Vegetation Index (OSAVI)?, Equation: OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16)) 5) 绿度指数(Greenness Index (G), Equation: G = R554 / R677) 6) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI), ?Equation: MCARI = [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670)) 7) 转换类胡罗卜素指数(Transformed CAR Index (TCARI)?, Equation: TSARI = 3 * [(R700- R670) - 0.2 * (R700- R550) * (R700/ R670)]) 8) 三角植被指数(Triangular Vegetation Index (TVI)?, ?Equation: TVI = 0.5 * [120 * (R750- R550) - 200 * (R670- R550)]) 9) ZMI指数(Zarco-Tejada & Miller Index (ZMI), Equation: ZMI = R750 / R710) 10) 简单比值色素指数(Simple Ratio Pigment Index (SRPI), Equation: SRPI = R430 / R680) 11) 归一化脱镁作用指数(Normalized Phaeophytinization Index (NPQI), Equation: NPQI = (R415- R435) / (R415+ R435)) 12) 光化学植被反射指数(Photochemical Reflectance Index (PRI), Equation: PRI = (R531- R570) / (R531+ R570)) 13) 归一化叶绿素指数(Normalized Pigment Chlorophyll Index (NPCI), NPCI = (R680- R430) / (R680+ R430)) 14) Carter指数(Carter Indices?, Equation: Ctr1 = R695 / R420; Ctr2 = R695 / R760) 15) Lichtenthaler指数(Lichtenthaler Indices?, Equation: Lic1 = (R790 - R680) / (R790 + R680); Lic2 = R440 / R690) 16) SIPI指数(Structure Intensive Pigment Index (SIPI), Equation: SIPI = (R790- R450) / (R790+ R650)) 17) Gitelson-Merzlyak指数(Gitelson and Merzlyak Indices?, ?Equation: GM1 = R750/ R550; GM2 = R750/ R700)   4. 热成像分析(选配):用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐射或低水条件(干旱) 5. 近红外成像分析(选配):用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。   系统配置与工作原理:   整套系统由自动化植物传送系统、光适应室、RGB成像、FluorCam叶绿素荧光成像、高光谱成像、植物热成像、植物近红外成像、自动浇灌施肥与称重系统、植物标识系统等组成,光适应室内的植物可由传送带传送到成像室进行成像分析等。   技术指标:   1. 自动装载与卸载植物样品,通过条形码或RFID标签识别跟踪样品 2. 光适应室:用于光照适应或植物培养,LED光源光照强度达1000μmol/m2.s,无热效应,强度0-100%可调,可通过实验程序预设光照周期变化,可选配通用型或专用型如水稻生长观测室等,还可选配三维扫瞄成像分析功能(包括XYZ三维扫瞄成像系统和软件) 3. 标配托盘架30x30cm,用于安放盆栽植物或可以盛放多个小花盆的托盘 4. 自动传送系统由光适应室到成像室形成一个环形传送通道,传送带采用具变速器的三相异步马达,200-1000W,传送带宽320mm,负载力130kg,速度9m/min 5. 移动控制系统中央处理单元:CJ2M-CPU33;数字I/O:最大2560点;PLC通讯:通过以太网100Mb/s高端PC;OMRON MECHATROLINK-II 最大16轴精确定位 6. 植物成像测量室:150cm(长)x150cm(宽)x220cm(高),与环境光隔离(light-isolated),快速自动开启关闭门,开启关闭周期小于3秒,传送带入口具光幕传感系统、条码识别器和RFID读取器 7. RFID读取器辨识距离:2-20cm;通讯:RS485;条码识别器可读取1维、2维和QR码,具LED光源便于弱光下辨识,RS485通讯 8. F3EM2光幕系统,精确测量植物高度和宽度以便进入成像测量室后摄像头自动精确定位,测量范围150cm,分辨率5mm 9. 叶绿素荧光成像:包括光隔离成像室、自动开启与关闭门、传送带、PLC控制自动上下移动聚焦系统、4个LED光源板、8位绿波轮等,单幅成像面积35x35cm,测量光橙色620nm,橙色和白色双波长光化学光,饱和光闪为白色或蓝色 10. 自动灌溉与称重,可同时对5个植物种植盆进行浇灌和称重,精确度±1g;称重后精确浇灌,可通过实验程序(protocol)预设浇灌过程(regime)或干旱胁迫状态,还可选配营养供给系统随浇灌定量供给植物营养(如氮肥等);称重前自动零校准,还可通过已知重量(如砝码)物品自动进行再校准;防护级别:IP66 11. 称重系统由4个称重单元组成,安全承载限:150% Ln;温度补偿:-10-40°C,标配测量范围7kg,可选配10kg、15kg或20kg 12. RGB成像:顶部和侧面三维成像(3个摄像头),每个摄像头各自拥有独立的控制面盘以设置曝光时间、增益、白平衡等,通过控制面盘的快照键可即时拍照并显示分辨率等信息,还可通过自动模式自动成像并存储至数据库,每次扫瞄成像时间小于10秒 13. RGB成像系统包括成像室(光隔离)、传送带及位置传感器、3个摄像头、光源及成像分析软件,标配成像范围150cm(长)x150cm(宽)x150cm(高),LED冷白光源(不对植物产生热效应) 14. 标配USB以太网摄像头,有效像素4008x2672,像素大小9.0μm,比特分辨率12比特,光量子效率:蓝光峰值465nm,绿色峰值540nm,红色峰值610nm;28mm光学镜头,口径43.2mm,光圈范围2.8-F16 15. NIR近红外成像单元:可成像采集1450-1600nm水吸收波段,以反映植物水分状况,在供水充沛情况下表现出高NIR吸收值,干旱胁迫情况下则表现出高NIR反射,NIR假彩色成像可以通过软件反映和分析植物水分状况 16. 高光谱成像单元包括光隔离成像测量室、自动开启关闭门、传送带、PLC控制自动移动聚焦镜头包括SWIR和VNIR镜头、光源、成像分析系统等,VNIR镜头波段380nm-1000nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速12-236 fps;SWIR镜头波段900-2500nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速60或100 fps,视野150x100cm 17. 用户可通过实验程序选择SWIR成像、VNIR成像或两个镜头全波段成像,每个镜头成像时间分别为15秒 18. 热成像单元:分辨率640x480像素,温度范围20-120°C,灵敏度NETD<0.05°C@30°C/50mK,成像面积可达150x150cm 19. 可选配人工气候室,植物生长面积9.5m2,生长高度2.0m,温度稳定性±1°C,430nm-730nm白色和IR LED 光源,1000μmol/m2/s(距离植物100cm高度的光强),可预设自动光照周期动态, 20. 系统控制与数据采集分析系统: Ø 用户友好的图形界面 Ø 用户定义、可编辑自动测量程序(protocols) Ø MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中 Ø 植物编码注册功能:包括植物识别码、所在托盘的识别码等存储在数据库中,测量时自动提取自动读取条形码或RFID标签 Ø 触摸屏操作界面,在线显示植物托盘数量、光线强度、分析测量状态及结果等,轻松通过软件完全控制所有的机械部件和成像工作站 Ø 可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB扫面成像、叶绿素荧光成像、称重及浇灌等 Ø 实验程序(Protocols)具备起始键、终止键、暂停键 Ø 可根据实验需求自动控制植物样品的移动和单一成像站的激活 Ø 可提供3个相机视角的RGB数字生长分析,包含阈值分析和颜色分析 Ø 对于叶绿素荧光成像图片,软件可批量进行淬灭参数分析,包含了在背景去除图像上用户感兴趣区域和像素值的平均。分析数据以原始图像和分析数据的形式存储在数据库中。 Ø 对FIR热成像图,16位图可直接导出到MATLAB或通过软件生成温度分布的假彩图像。   部分用户:   1. 国际水稻研究所(菲律宾)The International Rice Research Institute, Los Banos Philippines  2. 澳大利亚联邦科学与工业研究组织植物表型组学中心The CSIRO Plant Phenomics Center, Canberra, Australia  3. 澳大利亚国立大学The Australian National University, Canberra. Australia  4. 孟山都公司(美国)Monsanto Corporation, St. Louis, USA.  5. 杜邦先锋国际良种公司Pioneer-Dupont, Des Moines, Iowa  6. 巴斯夫公司Metanomics(柏林)Metanomics (BASF), Berlin, GDR  7. 巴斯夫公司CropDesign(比利时)CropDesign (BASF), Nevele, Belgium  8. 美国合成基因公司Synthetic Genomics, La Jolla, USA  9. Palacky 大学Palacky University Olomouc, Czech Republic 10. Masaryk 大学Masaryk University Brno, Czech Republic   产地:欧洲    
北京易科泰生态技术有限公司 2021-08-23
乾立智能热成像测温机器人
深圳鹏翔智明光电科技有限公司 2021-08-23
Si基GaN功率半导体及其集成技术
随着便携式电子设备的快速发展,将微型电子设备运用到可穿戴设备或者作为生物植入物的可行性越来越大。用柔性电子器件来替代传统的硬质电子器件的重要性也愈加凸显,如何解决柔性电子设备的储能问题,是实现这些可能性的重要因素之一。 本成果设计并制备了一种新型柔性微型超级电容器,其具有制备工艺简单,成本较低,适用于各种粉末状电极材料等特点。
电子科技大学 2021-04-10
垃圾焚烧飞灰填埋成套技术集成
垃圾焚烧飞灰处理达标后在卫生填埋场分区处置是今后我国发达地区飞灰处置的主流途径,这类填埋场的污染形成途径、强度与控制方法均与传统原生垃圾填埋场不同,现有填埋场污染控制技术从环境和经济角度均不适用,亟需高效的控制技术。本项目依据处理后焚烧飞灰填埋的污染衍生途径,发展控制处理飞灰填埋作业中黏附作业机械、风吹飘散的飞灰颗粒化技术;同步集成飞灰溶解性盐分缓释技术;发展雨水近零渗入的处理飞灰填埋作业技术。依据所集成的飞灰填埋前处理和作业技术,进行现场运行验证及条件优化试验。项目旨在发展既能够提高填埋场污染控制的效果,也能改善污染控制的经济条件的集成技术;而且同步开展现场应用验证试验,使成果具备推广应用的条件。通过推广应用可以为焚烧飞灰填埋场的运行提供支撑条件。 同济大学固体废物处理与资源化研究所,近5年来已主持承担和完成国家973计划课题、863计划课题、国家自然科学基金面上/青年项目、国家863和科技支撑计划、国家重大科技专项子课题项目等20余项;相关成果分别获国家级科技奖励二等奖和省部级科技奖励一等奖、二等奖和三等奖多项;拥有授权中国发明专利40项。在长期的固体废物处理与资源化利用技术研究发展中,已积累了扎实的研究基础,特别是在生活垃圾填埋和焚烧方向,分别承担了国家973计划课题(可燃固体废弃物热转化过程中重金属的排放控制及关键污染物的协同脱除(编号2011CB201504),城市固废物-化-生相变及污染物产生(编号2012CB719801)),完成了国家863计划:城市生活垃圾生态填埋成套技术与设备(编号2001AA644010)、城市生活垃圾生态填埋成套技术及示范(编号2003AA644020),国家科技支撑计划:低成本可控制生活垃圾填埋关键技术(编号2006BAJ04A06-05)等10余项课题(子课题)的研究。 常州市生活废弃物处理中心是国内较早开展处理后达标焚烧飞灰在卫生填埋场处置的单位;在数年的实际运行中,面临了渗滤液收集管道阻塞等问题,也通过与同济大学的合作,探索了解决问题的方法,积累了一系列实用技术。目前,该中心二期续建工程已施工完毕,即将投入运行,正是集成各项新技术,开展试验研究的有利时机。为利用有利条件,发展行业共性技术,同济大学将联合该中心开展项目研究。
同济大学 2021-04-11
Si基GaN功率半导体及其集成技术
电子科技大学功率集成技术实验室(Power Integrated Technology Lab.-PITEL)自2008年就已经开展Si基GaN(GaN-on-Si)功率器件的研究,是国内最早开展GaN-on-Si功率半导体技术研究的团队。近年来在分立功率器件如功率整流器、增强型功率晶体管及其集成技术方面取得了突出的研究成果。2008年在被誉为“器件奥林匹克”的国际顶级会议IEDM上报道了GaN-on-Si开关模式Boost转换器,国际上首次实现了GaN-on-Si单片集成增强型功率晶体管和功率整流器
电子科技大学 2021-04-10
数模混合集成电路设计产品
模数转换器(ADC)芯片,是绝大多数电子系统中必不可少接口部件,进行了高速ADC结构、高性能运算放大器、高速采样保持、高精度基准电压源等方面的研究与设计,已经完成了10位40MSPS的高速高精度ADC芯片的色伙计与流片。
东南大学 2021-04-10
镁锂合金及其集成零件成型
镁锂合金及其复合材料具有高的比强度和比刚度、优良的减震性能和电磁屏蔽性能,在航空、航天、武器、单兵装备、3C产品等领域有着广阔的应用前景。 本项目研制了镁锂基合金及其复合材料的设计技术、熔炼技术、成型工艺和表面处理技术,设计开发了具有超轻(密度约为1.5g/cm3)、高强(抗拉强度200-300MPa)、高模量(70-100GPa)、高稳定性的稀土金属间化合物增强Mg-Li基复合材料,建立了镁锂合金及其复合材料全链条中试制备平台,部分产品样品已经在航空航天、单兵装备等领域获得试用。
北京航空航天大学 2021-04-10
集成生物信息/药物信息服务平台及应用
药物作用潜在靶标的识别对于早期药物分子的研发、安全性评价和老药新用等领域都有着非常重要的意义,但是受制于通量、精度和费用的影响,实验手段的应用难以广泛开展。作为一种快速而低成本的手段,计算机辅助的靶标识别算法的开发正在受到越来越多的重视,发展快速、精确的靶标识别预测方法对于靶向性药物开发、药物—靶标相互作用网络图谱的构建和 小分子调控网络的分析都具有十分重要的意义。 本项目主要是综合利用化学信息学和生物信息学技术,整合现有药物及其作用途径和调控网络的信息,构建药物效应图谱。包括药物及具有生物活性数据库的建立;药物靶标及调控网络信息数据库的建立、整合及注释;药物作用靶标和调控网络预测分析方法和技术的发展;建立了一个技术先进、具有自主知识产权的集成药物设计、化学信息、靶标预测、药物调控通路信息的药物信息服务平台系统。
华东理工大学 2021-02-01
城市污泥干化焚烧资源化集成技术
城市污泥含有大量的水分,并含有大量有机物、丰富的氮、磷等营养物、重金属以及各种致病微生物,污泥处理处置问题解决不好,可能造成大范围的二次污染问题。国家《“十二五”全国城镇污水处理及再生利用设施建设规划》要求福建省在12五期间新增干污泥处置规模高达14.4万吨/年。《城镇污水处理厂污泥处理处置及污染防治技术政策(试行)》(环境保护部2010年第26号公告)指出:“在有条件的地区,鼓励污泥作为低质燃料在火力发电厂焚烧炉、水泥窑或砖窑中混合焚烧”。污泥干化后在燃煤锅炉协同焚烧是一种因地制宜、节能减排的污泥无害化处置方式,在土地资源缺乏的地区具有较好的适用性。 本项目利用电厂排放的烟气余热和低品位蒸汽对含水率为80%的城市湿污泥进行干化处理(流化床干化技术)、干污泥投入锅炉进行焚烧,污泥能源资源回收利用发电、污泥焚烧产生的灰渣用于生产水泥,并对污泥焚烧的烟气进行净化处理,实现污泥的无害化和资源化处置。
集美大学 2021-04-29
一种高密度集成光波导
发明(设计)人:李涛, 宋万鸽, 祝世宁。本发明涉及一种高密度集成光波导。所述光波导设于波导衬底上,包括:多根弯曲波导;以所述弯曲波导的弯曲方向为y轴,以光的传播方向为x轴建立直角坐标系;且基于所述直角坐标系,所述弯曲波导沿着所述传播方向在所述弯曲方向上周期性弯曲;多根弯曲波导沿着所述y轴方向平行排列,且所述弯曲波导与所述y轴方向相互垂直,形成弯曲波导阵列;通过调节所述弯曲波导之间的耦合系数实现所述光波导的光波导信号传输功能或者光波导定向耦合功能。本发明所提供的光波导摆脱了高密度集成下对波导间距、波长等参数的敏感性和依赖性,因此具有结构鲁棒性和宽带特性。
南京大学 2021-04-10
首页 上一页 1 2
  • ...
  • 17 18 19
  • ...
  • 56 57 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1