高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多西他赛脂质纳米混悬液
多西他赛(docetaxel)的作用机制与紫杉醇类似,诱导和促进微管的装配,使 微管不解聚;抑制细胞的有丝分裂,从而阻止肿瘤细胞的增殖。 抗肿瘤活性是紫杉醇的 1.3~12 倍,对乳腺癌、肺癌有很好的疗效;对头 颈癌、胃癌、胰腺癌及软组织肿瘤的患者也具有较好的治疗作用。 存在缺点:溶解性较差、含吐温-80 和乙醇严重的副反应、药物全身分布靶 向效率低 脂质纳米混悬液的优势:1.现实性高,高压乳匀制备,工艺简单,利于大 工业生产。2.应用广泛,适用于既不溶于水又不溶于油的药物。3.毒性更低,以 单一的可注射性磷脂作为载体材料无有机溶剂的使用。4.稳定性提高,载药量 高无药物泄露问题。
山东大学 2021-04-13
锂镧锆氧复合的固体电解质
300Wh/kg,首次在马里亚纳海沟完成深海测试
中国科学院大学 2021-04-13
柑橘提质增效栽培技术研发与示范
可以量产/n成果简介:该项目自主研发并首创了椪柑开心形整枝、柑橘缩冠改造、防治果面伤害、无核椪柑丰产等技术,在机制效应研究的基础上在湖北柑橘产区得到全面推广,使得柑橘产量、品质和效益显著提升。同时在引进的基础上,结合我国柑橘产区实际消化创新了起垄栽培、覆膜增糖、隔年交替结果、留树保鲜、椪柑简易设施等技术,研究明确了其作用机制,实现了在湖北柑橘产区规模化的示范推广,在柑橘提质增效上成效显著。不仅具有适应性强、简单使用、增产增质增效明显的特点,同时各技术之间又可以互相组合,形成提质栽培集成技术。研究成果
华中农业大学 2021-01-12
弱筋小麦量质协调栽培理论与技术
该成果先后获得神农中华农业科技奖三等奖和农业部丰收奖一等奖。该技术完善了弱筋小麦“足穗稳粒增重”栽培途径, “适期早播、 半精量播种、 适量减氮、 氮肥前移、 适时化控”等量质协调栽培技术体系, 制定了实用性好、 可操作性强的弱筋小麦量质协调栽培技术规程和明白图;多途径进行弱筋小麦量质协调栽培技术的推广应用,建立了五种不同形式的产业化模式。
扬州大学 2021-04-14
湖北​省人民政府办公厅关于印发《湖北省科技金融质效提升行动方案》的通知
到2026年末,力争形成与科技型企业全生命周期融资需求更加匹配的多元化接力式金融服务体系;全省科技型中小企业获贷家数在现有基础上增长70%,贷款余额年均增速达到20%;科创板、创业板、北交所上市公司数量显著增加,占全省上市公司的比重超过50%,直接融资规模及创业投资管理资金规模稳步扩大。
湖北省人民政府办公厅 2024-08-16
专家报告荟萃㊳ | 超星指针集团副总经理王丽洁:AI能力中心助力高校新质生产力发展
在此背景下,我们要直面挑战、狠抓机遇,深化人工智能技术与高校管理的有机融合,加速推进智能管理服务的跃升,有力支撑和保障学校各项业务的高质量、可持续发展。
中国高等教育博览会 2025-03-04
稀土掺杂非磁过渡金属对“铁磁/非磁”纳米自旋泵浦器件的磁性调控
成果介绍铁磁(FM)/非磁(NM)结构的双层膜中发现的自旋泵浦(spin pumping)效应是磁学和自旋电子学中的一个突破性发展,因此吸引了众多的研究兴趣。它和铁磁层自旋极化电流相关,同时又和非磁层的自旋轨道耦合有直接联系。本项目采用具有较高的自旋轨道耦合系数的稀土金属调制非磁层,运用铁磁共振和输运两种方法,并结合结构、磁性和同步辐射分析等手段,研究不同稀土掺杂对铁磁/非磁过渡-稀土合金(Py/NM-RE)复合纳米双层膜的结构和界面的影响,得到自旋泵浦强度、界面混合电导以及非磁层的自旋轨道耦合强度和自旋扩散长度的调控规律。从而探索该复合纳米双层膜中的界面自旋泵浦效应和非磁层自旋轨道耦合对自旋动力阻尼的影响机制。这些研究结果将有利于开发新型复合磁性材料和新型强自旋-轨道耦合的非磁材料,有利于集成多功能自旋器件。
东南大学 2021-04-11
二次电池用固态电解质测试技术
应用固态电解质的二次电池有望解决目前商用二次电池的高安全隐患和低能量密度等重要问题。目前固态化的二次电池尚难实现商业化应用,除了材料性能有待提高之外,严格统一的测试标准和规范化的测试技术也是其实用化的主要瓶颈。固态电解质的主要性能参数包括:离子/电子电导率、电化学窗口、界面稳定性和与电极材料的界面兼容性等。本项目将基于电化学原理,应用计算机软件编程和接口技术,结合固态电解质的设计、制备和封装工艺等,将固态电解质的测试技术进行标准化整合为实际测试系统,实现固态电解质
厦门大学 2021-01-12
生物油脱氧提质催化剂及其制备方法
本发明涉及一种用于生物油催化提质的催化剂及制备方法,包括催化剂活性成分和 催化剂载体,其特征在于,按质量百分比计,所述催化剂活性成分及催化剂载体的组成为: NiO 为 10-32wt%;MoO3 为 5-18wt%;CoO 为 5-15wt%;余分为白云石催化剂载体。本发明 的优点在于采用廉价易得的白云石作为催化剂载体,催化活性组分为镍、钴和钼复合组分, 使生物油酸性减弱、含氧量降低。该催化剂制备简单、强度大、催化活性强、可再生,不仅 可用于生物质制备优质生物油,也可应用于生物油催化重整制氢。
安徽理工大学 2021-04-13
预测固体电解质界面的原子模拟软件
本技术提出了基于多尺度理论模拟结合深度机器学习的一整套解决方案,即利用先进多尺度模拟方法精准解析SEI原子结构,建立新一代SEI模型,阐明SEI结构和形成机制,完整构建SEI与电池性能之间的内在联系,定向设计符合不同商用条件的新型电解液配方,为开发新一代高能量密度电池提供可能。 一、项目分类 显著效益成果转化 二、技术分析 随着智能手机、笔记本电脑等消费电子产品的快速发展,锂离子电池(Lithium Ion Battery, 简写为LIB)已经成为最成功的电化学储能设备之一,并从根本上影响并改变了人们的日常生活方式。随着制造工艺的逐步成熟,LIB的能量密度已经接近其理论极限。另一方面,可移动电子设备的快速普及和汽车电动化的蓬勃发展也不断要求开发具有更高能量密度的充电电池以满足实际使用的需求,而最先进的LIB依然无法完全满足上述需求。因此,寻找更高能量比的锂电池电极材料,加快下一代新型锂电池关键技术的相关研究,已成为制约锂电池技术产业发展进步的关键问题。锂金属电池的能量密度虽足以达到下一代电动车的要求,但其自身的稳定性仍令人担忧,这主要是因为Li金属的反应活性过高,其几乎可与所有的电解液均能自发地发生化学反应。在电池的运行过程中,Li电极和电解液之间通过自发化学反应和电化学反应导致了固体电解质界面(solid electrolyte interphase,SEI)的形成。当所形成的SEI结构不均匀时会诱发电池体积膨胀,此外,充放电过程中锂的不均匀沉积会导致锂枝晶的形成,锂枝晶的不规则生长会刺穿SEI,导致SEI膜发生破裂,并产生死锂,降低锂金属电池库伦效率;更严重的是,锂枝晶的不断生长会刺穿隔膜,造成电池内部的短路,导致火灾和爆炸等安全事故,大大缩短了电池的使用寿命,严重阻碍了其大规模商业化发展。因此,SEI对LMB的性能具有至关重要的影响。良好且稳定的SEI可以阻止(或者大幅度减缓)负极界面上反应的持续发生,起到保护Li电极的作用。针对下一代高稳定性锂金属电池设计中存在的关键问题,结合国际研究进展与本团队前期研究基础,我们提出了基于多尺度理论模拟结合深度机器学习的一整套解决方案,即利用先进多尺度模拟方法精准解析SEI原子结构,建立新一代SEI模型,阐明SEI结构和形成机制,完整构建SEI与电池性能之间的内在联系,定向设计符合不同商用条件的新型电解液配方,为开发新一代高能量密度电池提供可能。本方案已形成完整的工作流,相关自动化软件已开发完成并交付使用,且具有完全的自主知识产权,可用于国内外上游电池生产研发企业积累原始电池性能数据,大范围筛选有效电解液组分,指导下一代高能量密度锂电池研制。 我们的技术优势与创新主要表现在: 1)首次在电池体系中实现了QM与MM的混合模拟与混合加速; 2)在电池体系模拟中实现了开放电子体系对电化学反应的热力学和动力学预测; 3)在保证精度的前提下,实现了在纳米尺度上对真实的实验SEI结构直接模拟; 4)通过耦合深度机器学习,实现了电解液组分大范围筛选与性能优化。
苏州大学 2022-08-15
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 45 46 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1