高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高性能镁合金及镁基复合材料
本项目在高性能镁合金以及镁基复合材料的制备和成型工艺、变形行为、微观结构、力学性能、阻尼特性、摩擦磨损行为、机械加工、表面处理等方面开展了大量的系统研究,开发了轻质、高比强、高比刚并同时具有高阻尼的新型镁合金及镁基复合材料。这些新型镁合金及其复合材料具有广泛的应用前景。
哈尔滨工业大学 2021-04-14
非均相催化材料及及反应器设计开发
1. 高品质纳米钛白粉的研究及结构化成型纳米二氧化钛由于具有良好的化学稳定性、高比表面积、热稳定性、无毒性等特点,并易于与负载金属间产生SMSI效应,在催化工业中得到了广泛应用,诸如:火电厂尾气脱硝处理、VOCs(挥发性有机化合物)催化燃烧处理、柴油车尾气排放控制等。以火电厂的烟气脱硝SCR催化剂为例,纳米级钛白粉作为催化剂载体,占催化剂粉体的80‒90%,总成本的40‒50%,是SCR脱硝催化剂的重要组成。但是目前全球只有日本和欧洲的少数厂家可以生产高品级纳米钛白粉。在我国,目前应用于催化剂工业的纳米钛白粉尚未完全国产化,这是烟气SCR脱硝催化剂等环保催化剂的价格居高不下的主要原因之一。大多数国内SCR脱硝催化剂是通过引进技术、设备和纳米钛白粉粉体等原料,其后自行压缩制作蜂窝式、板式等催化剂,并没有完全掌握催化剂中所有成分的制作及依据不同燃料尾气进行配比的技术经验和诀窍。总体上说,SCR脱硝催化剂在国内基本还处于“来料加工”的状态(即使是国内市场份额较大的东方凯特瑞、无锡龙源等企业)。我们研究室通过探索钛白粉的物化性质、成型性及催化性能三者之间的关系,尝试从科学角度去构建适用于SCR脱硝催化剂等环保催化剂的纳米钛白粉的制备关键技术。进而在此基础上,制备高品级的纳米钛白粉,包括钨钛,硅钛,钒钛等一系列产品,达到国外同类产品技术水平。同时通过探讨不同因素在蜂窝状脱硝催化剂成型过程中的影响,制备工业级别的蜂窝状催化剂,从而最终改变目前国内烟道气脱硝催化剂尚处于的“来料加工”状态,掌握完全自主的知识产权。在研究中,我们采用改进的水热合成法,在较为温和的条件下(< 100°c的低温、常压下),以偏钛酸为原料出发,制备具有高比表面积和良好耐热稳定性的纳米钛白粉(图-1)。同时在制备钛白粉的过程中,充分考察浆料的ph值、杂质含量、助剂(钨、硅)等的添加、煅烧温度等对最终产品的影响。另一方面,在催化剂成型中,我们对添加剂种类、加入顺序、加入量和操作条件等对催化剂机械性能和活性等的影响进行了彻底的研究。在充分考虑泥团的酸碱,硬度,塑性等多种指标的前提下,采用独自的多段搅拌技术制备了蜂窝状催化剂(图-2)。在纳米钛白粉粉体及成型性研究的同时,我们对其作为载体或催化剂在脱硝、脱臭及光化学催化中的应用也开展了研究,例如电厂、大型锅炉、垃圾焚烧厂、船舶(新型轻质波纹板催化剂)等大型设备的烟气SCR脱硝催化剂、VOCs(挥发性有机化合物)催化燃烧催化剂等,以及小型工厂、自动车、民用等SCR脱硝、VOCs催化燃烧等。图-3为纳米氧化钛在VOCs催化燃烧中的应用,图-4为工业级火电厂脱硝用纳米氧化钛挤出型蜂窝状SCR催化剂,图-5为工业级柴油车尾气脱硝用涂层式蜂窝状催化剂。与商业钛白粉的耐热性对比(900°C 9 h in air)    不同掺杂物质对纳米氧化钛比表面积的影响图-1 高比表面积和良好耐热稳定性的新型纳米钛白粉2. 新型金属整体式催化剂载体(PCT专利WO2005/089939A1,日本专利2011-31162) 催化剂的活性组份、结构化载体和反应器三者集成化的思想,已成为当前催化领域重要的且被逐渐接受的新思维。从宏观尺度出发研制的具有结构化的整体式催化剂,由于糅合了催化剂设计和反应器设计,从而具有传质传热好、床层压降低、紧凑小型、工程放大简单等优点,有利于提高催化反应的活性和选择性等。在大气环保和催化燃烧等气固相反应中已得到广泛应用,在多相反应中也显示了巨大的潜力。但传统的涂层式整体式催化剂,因活性组分涂层与基材物性(堇青石或金属合金)的较大差异,使得涂层的粘附稳定性不高,易剥离的问题尚未得到完善解决。针对传统涂覆法制备的金属基体整体式催化剂(MMC)的活性涂层易剥离的瓶颈,以及近年来发展的非涂覆式MMC的比表面积小、孔道难以调控的缺点,我们利用多孔阳极氧化铝材料(PAA)的金属自生长氧化铝膜与金属基体间具有高度粘附性的特点,在保持其有序孔骨架结构的前提下,通过“阳极氧化-扩孔-水热反应-焙烧”的方法,对其孔道结构和化学特性进行改性修饰,制备一种具有大比表面积的新型非涂覆式MMC。在材料合成过程中,结合阳极氧化和扩孔处理对多孔膜的几何参数的调变,解析水热反应中拟薄水铝石层的形成机制以及由此带来的封孔效应,创新性地利用金属自生长和原位相变技术在MMC上实现大范围尺度可调的规则双孔道结构。在此基础之上,我们通过探索PAA催化剂的构效关系,获得既利于分散和反应又有利于扩散传质的孔道特征,发展了一套面向具体反应可控合成MMC的新方法。改性PAA膜与金属基材间紧密的一体化构造,实现了反应场上热量的快速供给与转移。高度可塑性的金属基材使得催化剂可以具有复杂的立体结构,确保了装置的低压损和小型化(图-6)。采用Al/Fe–Cr–Ni Alloy/Al覆层铝材制备的高温型PAA载体,实现了快速通电加热,从室温到1000°C仅需数秒,大幅提升了系统启动性和响应性(图-7)。另外,开发了金属中间扩散层技术和微小龟裂技术用于改善PAA膜在剧烈机械或热冲击下的韧性和稳定性,在40000次通电加热1000°C – 室温急冷的循环测试中,未发现PAA膜的剥落。在研究PAA载体的同时,对其在环保和新能源领域,尤其是对系统压损、启动性、热应答性/热耦合、轻质化及小型化等具有严格要求的体系中的应用,均开展了长期的研究,例如自动车尾气脱硝处理,VOCs/CO/NH3的催化燃烧,甲烷/甲醇/乙醇/DME/煤油的重整制氢等等。3. 贵金属替代型高效催化燃烧(含尾气污染的催化燃烧治理)目前在工业催化燃烧中,主要以贵金属为活性组分,多使用颗粒状充填反应器或堇青石蜂窝状反应器。主要问题是:① 贵金属催化剂性能优异,但价格昂贵;② 设备较为庞大,能量利用率低和运转费用过高,从而严重限制了向中小型企业的普及应用。贵金属替代催化剂和高效节能的紧凑型反应器的开发成为该领域的主要发展趋势。我们对于有机挥发性气体VOCs、CO及NH3的催化燃烧净化,使用多种类型的催化剂进行了研究。主要包括:传统的粒状负载催化剂、负载型改性PAA整体式催化剂、Bulk型复合金属氧化物催化剂、改性TiO2催化剂、含碳素的非贵金属催化剂等。目前为止,所开发的Bulk型Cu-Co系、Cu-Mn系、Fe-Mn系等催化剂,在芳香族(苯、甲苯、二甲苯)的燃烧上接近贵金属催化剂。在CO、NH3、乙酸乙酯、己烷等的燃烧上达到或超越贵金属催化剂(表-1)。当前,我们在整合PAA改性修饰技术和复合金属氧化物技术的基础之上,正在从事负载非贵金属的PAA催化燃烧催化剂的开发,并把它用于化工供热源及大气污染的燃烧治理(VOC、NH3、CO、HC等)。充分利用金属整体式催化剂在可塑性和传热性上的优异性能,通过合理的催化剂成型及反应器设计,提高放/吸热耦合性,实现高效节能和小型化的目的(诸如采用Multi-tube型、Wall-type型、多层同心圆等反应器设计,在平板状催化剂的两侧分别设置燃烧反应和换热介质)。同时,在结合金属整体式催化剂特性的基础之上,根据具体的用途对反应体系进行合理的工艺设计。例如对于低浓度大风量尾气的处理,采用“浓缩–燃烧”一体化设计,并在反应启动阶段采用通电启动催化反应(图-8)。图-8 大中小型VOCs催化氧化处理系统4. 多功能型重整制氢催化剂的研究 (日本专利2011-31162) 碳氢化合物的重整制氢主要用途为PEFC燃料电池的制氢及H2和CO化工原料的制备。但是由于重整制氢多为强吸热反应,反应体系对吸/放热的耦合有严格要求,另外PEFC制氢的启动性和小型化等也被较多地关注。2004年起,我们启动了多功能重整制氢催化剂的开发(甲烷、DME、甲醇、乙醇、煤油等),为降低催化剂成本,使用低价Ni为主要活性成分(图-9)。为解决镍催化剂中常出现的镍氧化、结焦、烧结等失活问题,在孔道控制的基础之上,通过Nickel Aluminate中间层及痕迹量贵金属添加等技术的开发,制备了具有较高寿命并且可以自活化•自复活的AAO镍催化剂。在与商业催化剂(SÜD–CHEMIE的RUA和FCR-4,新日本石油的RUA-2)的对比测试中,该催化剂表现出更加优异的性能。使用都市煤气13A为原料,3000h静态寿命测试及500回DSS模式测试(Daily startup and shutdown)均取得良好结果(图-10)。基于板式通电加热型PAA催化剂的水蒸气重整制氢的测试结果表明,采用阶段式通电加热,系统启动时间可从传统的外加热式的1h缩短为10min,从而为实现PEFC的快速启动提供了有力的技术保障。多用途是该催化剂的重要特点。除天然气的水蒸气重整之外,在甲醇、乙醇、灯油的水蒸气重整,甲烷直接部分氧化重整,甲烷二氧化碳重整等体系中均取得了良好结果。迄今为止,在非贵金属催化剂中,多功能型重整催化剂尚未见报道。目前的主要工作是:1) 催化剂的进一步改良优化;2) 以流程集成化和强化传热为目的,进行Multi-tube或Wall-type型反应器的设计(重整–燃烧一体化) (图-11);3) 整合非平衡式“CO2吸附–重整”一体化设计,超越CO的SHIFT反应的平衡限制,例如采用CO2吸附技术,或催化膜反应器等;3) 生物质原料(生物质甲醇、乙醇、甲烷等)的重整制氢,及CO2的重整等研究;5. 整体式催化剂的新用途在上述研究的基础之上,我们根植于材料化学工程国家重点实验室和化学工程与技术国家一级重点学科,进行跨专业跨学科的合作,充分发挥整体式催化剂的特点,逐步拓展其在能源和环保等领域中的应用,例如:1) 金属基催化剂的放电电极和催化反应效果的叠加2) 再生式环控生保系统二氧化碳的Sabatier反应3) 加氢、裂解、C1及C2合成4) 水污染治理上的应用5) 传统化工领域的技术革新,例如,在催化精馏中实现流道设计用的塔填料与反应用的催化剂的一体化构造,用以实现装置的小型化、降低床层压降以及解决催化精馏常出现的液泛等问题。
南京工业大学 2021-04-13
隔热材料高温热导率非稳态法测试系统
热导率、热扩散率和比热是物质非常重要的热物理性能参数,也是进行绝热设计和热分析计算不可或缺的关键参数。基于非稳态平面热源法的高温可变气压热导率测试系统,可为纳米超级隔热材料、航空航天热防护材料、能源及建筑保温材料的制备和应用相关部门提供可靠的热导率和热扩散率测试手段。测试系统主要主要由平面热源、高温环境箱及数据采集系统等组成,如图 1所示,给平面热源通以一定形式(阶跃或脉冲式)的加热电流 I(t),同时用热电偶测量距热源为 x 的位置处材料内部的温度变化 T(x,t),根据热源-试样测量系统的传热数学模型及其非稳态导热方程的解析解,通过基于最小二乘拟合的参数估计算法,可以同时确定出设定温度和气压条件下被测材料试样的热导率、热扩散率和体积热容三个热物性参数。对于阶跃式加热,温度响应公式为:图1热导率测试范围:0.005~5 W/(m.K) ;测试精度:5%;温度范围:RT~1200℃;气压范围:10~105Pa 。
北京科技大学 2021-04-13
成都东软学院
成都东软学院是经国家教育部批准设立,由东软出资举办的一所民办普通高等院校。2003年经四川省人民政府批准,设立成都东软信息技术职业学院,开展高职专科教育;2003年学校被教育部确定为首批35所国家级示范性软件职业技术学院之一。2011年经教育部批准升格为本科院校,更名为成都东软学院,成为四川省第一所独立设置的民办普通本科高等学校;2015年通过新建本科院校学士学位评估;2016年成为四川省民办教育协会会长单位。 学校坐落于四川省成都市世界自然文化双遗产地“都江堰——青城山国家AAAAA级旅游景区”,现有在校生1万余人。学校现有9个教学系部,面向全国31个省(市、自治区)招生,是四川省第一批有专业在一本招生的民办高校。共设置了20个本科专业,以工学为主,涵盖工学、管理学、艺术学、文学4个学科门类。 学校秉承“教育创造学生价值,学生创造社会价值”的办学理念,明确了服务IT行业及区域经济发展的应用型办学定位,实施TOPCARES-CDIO一体化应用型人才培养模式,已累计为社会培养了2万余名毕业生。近三年累计2480人次获省级以上奖项,本科毕业生初次就业率达94%以上,人才培养质量得到了用人单位、社会各界的广泛认可。学校先后进入四川省“卓越工程师教育培养计划”“本科院校整体转型发展改革试点”“地方本科高校应用型示范专业”建设院校名列,并获得国家紧缺型(信息类)人才培养基地、国家火炬计划成都数字娱乐产业人才培训基地、国家数字媒体技术产业化人才培训基地、中国软件名城(成都)人才培养基地、四川省博士后创新实践基地及成都市文创产业园区等多项称号。学校重视人才培养,加强专业建设。学校连续三年在省级“民办高校重点特色专业质量提升计划”整体评价中位于全省第一;学校现有本科专业中,有3个省级综合改革试点专业,3个“省级卓越工程师教育培养计划”专业,6个“地方普通本科高校应用型”示范专业,4个省级“民办高校重点特色专业质量提升计划”专业。学校2014年获得教育部第三届全国民办高校党的建设和思想政治工作优秀成果奖,连续两年被华西都市报等主流媒体评选为“四川省十大教育品牌”,并被赋予“影响中国西部的教育品牌”称号。 学校坚持产学研合作育人,初步构建“八协同”产教融合育人机制,产学合作取得初步成效。校企共建校外实习实训基地208个,与东软、ARM、SONY、INFOR、力方国际、其卡通等公司及高校共建实验实训室12个,与东软睿道共建睿鼎实践教学平台;与北京其卡通共建原创动画制作中心;与东软网络安全事业部共建了“网络空间安全研究所”。学校主要参与制作的动画电影《神秘世界历险记4》票房超1亿元,52集动画TV剧《疯了!桂宝2》上线半年超8亿点击量。学校自主知识产权的软件著作权成果转化已超过330万元。学校开发的“体育艺术年度报表系统”获得教育部优秀改革成果奖。 学校积极开展创新创业教育,于2005年成立了大学生创业中心(Student Office & Venture Office,简称 SOVO),将创新创业教育融入人才培养全过程。学校先后成为全国民办院校深化创新创业教育基地建设示范高校、省级创新创业教育综合改革试点单位、省级大学生创新创业俱乐部、省级众创空间、成都市创新创业载体(苗圃)和成都创新地标。 学校坚持开放办学和国际合作,积极实施“引进来、走出去、双向合作”。目前已与澳大利亚亚莫纳什大学及阿德莱德大学、美国纽约州立大学石溪分校等近60所境外高校建立友好合作关系。与美国圣何塞大学教育集团联合成立了成都东软学院圣何塞研究院,聘请45名美国专家作为学校客座教授,并在美国设立了硅谷校区。学校是四川省最早招收全日制学历教育留学生的民办高校。 面向未来,学校将全面贯彻落实党和国家的教育方针,遵循高等教育规律,以立德树人为根本任务,强化内涵建设,突出办学特色,不断向深化TOPCARES-CDIO教育教学改革,积极发扬自强不息、勇于奉献、敢于创新的精神,努力把学校建设成为西部地区具有显著IT行业特色的高水平应用技术大学。
成都东软学院 2021-02-01
广东东软学院
广东东软学院(以下简称东软学院)是经教育部批准设立,由东软控股(Neusoft Holding)联合亿达集团共同投资举办的的全日制普通高等本科学校。学院为广东省首批省级示范性软件学院、广东省依法治校示范校;拥有1个国家级紧缺人才培养基地(信息技术类)、1个国家级众创空间、2个省重点一级学科、3个省级人才培养基地(育人平台),以及2个市级工程技术研究中心。学院前身南海东软信息技术职业学院成立于2002年,2014年5月经教育部批准升格为本科高校,是一所以工学为主,管理学、人文学等学科专业相互支撑、协调发展的全日制普通本科高等院校。学院设有国际教育学院、继续教育学院、计算机科学与技术系、商务管理系、信息管理与工程系、数字艺术系、国际合作部、基础教学部、思想政治与理论部等2院4系3部,共开设15个本科专业和5个专科专业。在办学层次上,以四年制普通本科为主、同时也开展三年制普通大专、国家计划内国际班、留学生教育和继续教育,现有教职工500余名,全日制在校生9000余人。 学院坐落在佛山市高新技术产业开发区核心区,校园青山环绕,流水淙淙,环境幽雅,处处湖光山色,空气异常清新。学院毗邻广州,交通便利,驱车抵达广州、佛山市中心以及新白云机场仅30分钟车程。学院校园占地630余亩,校舍总建筑面积24万平方米,200多间多媒体教室均安装有空调。拥有标准室内体育馆、足球场、羽毛球场、网球场、乒乓球室、篮球场和400米标准跑道的田径运动场。新落成的图书馆大楼建筑面积2万平方米,气势恢宏,设施精良,纸质图书约70万册,电子图书31万册;有满足教学需要且装备优良的实验室25个、数字化教学支持中心1个,2万多个网络信息点遍布教室、休息室和宿舍,各种教学管理软件、现代化教学手段得到广泛应用,构建成独具特色的数字化校园。 在国家创新创业战略背景下,面对“互联网+”时代对创新人才的巨大需求,学院立足珠三角、辐射华南、面向全国,已发展成为产教深度融合的特色高校。学院与埃森哲、毕马威、IBM、惠普、花旗软件、汇丰、东软集团等众多国内外知名企业建立了紧密的教育合作关系。通过整合全球先进教育资源,使学生与国际最先进的现代IT教育接轨、培养拥有国际竞争力的新型IT人才。运用产业和行业发展中的“新理论、新技术、新工具、新产品、新应用”持续更新教育教学,有50%的实验(实训)基地与产业共建,有超过50%的专任教师具有产业经验。学院与印度韦洛尔理工大学、美国东南俄克拉荷马州立大学、英国哈德斯菲尔德大学、北安普顿大学、西英格兰大学、澳大利亚堪培拉大学、加拿大百年理工学院等著名海外高校开展双边合作。开设本硕连读、专本硕连读、本科双学位和专升本等不同模式的国际班。从2015年开始学院面向全球招收各国人员来华留学,开设了电子商务(留学生班)、软件工程(留学生班)以及汉语言和中国文化短期培训班。此外,学院还向全体学生提供多种出国留学途径和丰富的国际与海外交流机会。学院也与台湾展开密切的学术交流与合作,与台湾明道大学、台北城市科技大学、佛光大学、实践大学、健行科技大学等台湾高校开设“台湾专班”项目(“3+1”或“2+1”),为国家计划内招生。同时每学期一次面向全校学生组织举办“赴台研修”项目。 在快速发展的过程中,学院围绕“产教融合、创新创业、国际化”三个关键词,构建了产学合作、面向应用的CDIO一体化人才培养模式,获得了社会各界的广泛认可。 面向未来,学校将继续坚持“教育创造学生价值”的办学理念,持续创新,为社会培养基础知识扎实、掌握最新IT技术、具有创新精神和实践能力的“实用化、国际化、个性化”的高素质、应用型高级专门人才,向建设有特色、高水平、创业型应用技术大学的目标不断迈进!
广东东软学院 2021-02-01
软磁功耗仪
产品详细介绍特点: 1.同时测量电压、电流真有效值和功率损耗,采用乘积法测试方案,符合IEC标准推荐的测试方法 2.具有材料振幅磁导率ma、饱和磁感应强度Bs测量功能 3.测试频率任意设定,连续可调 4.具有磁化电流波形监视功能 5.遥控输出,方便生产线批量产品快速检测 6.连接简单,操作简便、快速,5-10秒钟得到测试结果
绵阳泰美格磁电科技有限公司 2021-08-23
山东鼎软天下信息技术有限公司
鼎软天下专注于供应链领域信息化20年,是国内领先的物流供应链全场景解决方案综合服务商。           鼎软天下自主研发的鼎呱呱供应链协同管理平台,可为企业提供包括OMS订单管理软件 、TMS运输管理系统、WMS仓储管理系统 、BMS计费管理系统 、PMS园区管理系统等的一体化云解决方案,为新能源汽车、设备制造、金属管材、能源化工、新零售/分销、食品冷链、循环租赁、物流园区、三方供应链、零担专线十大行业2000多家企业节约物流成本,提升供应链效率;为企业构建可视化、精细化、透明化的智能供应链管理体系,助力企业降本增效。           鼎软天下研发中心位于山东济南,并在青岛、上海、南京、安徽等地设立销售中心,服务客户包括吉利汽车、山东高速集团、交运集团、水发集团、天创管业、大牧人、杨铭宇黄焖鸡、天福连锁、苏州优乐赛、义乌红狮智慧物流园、星光大道物流等一大批行业头部优秀企业。鼎软天下曾先后荣获“CCTV-1新闻联播报道”、“2023年度中国物流信息化知名品牌”、“抗疫先进单位“、“抗疫爱心单位”、”“山东物流行业风云人物”、“数字化智能化升级改造创新案例”、“中国供应链管理最佳实践案例”等荣誉。           鼎软天下秉承“科技赋能物流,让物流人简单工作、快乐生活”的企业使命,助力企业物流与供应链数字化转型升级!鼎软天下将结合自身在物流与供应链领域信息化方面的优势,与合作伙伴齐心协力为智慧物流的可持续发展助力,促进行业整体发展!  
山东鼎软天下信息技术有限公司 2024-11-18
基于发动机动力传动件强化用 Al-P 晶种合金
Al-Si 合金具有低膨胀系数,良好的耐磨性及铸造性能,在内燃机活塞、缸 体压等发动机动力传动件制造领域广泛应用。过共晶 Al-Si 合金的微观组织中 通常存在五瓣星状、板片状、八面体和其他复杂相貌的初晶 Si,这些分布在该 合金基体中的较粗大初晶 Si,严重割裂了合金基体,在外力作用下,合金中的 Si 相尖端和棱角部位易引起局部应力集中,从而明显降低了合金的力学性能, 尤其是影响其塑性、强度、耐热性和热疲劳性能的提高。与此同时,在过共晶 Al-Si 合金中,初晶 Si 易出现集聚现象,严重降低了合金的各项性能。要改善 过共晶 Al-Si 合金的性能,必须同时对共晶 Si、初晶 Si 进行良好的细化处理,细 化、球化初晶 Si,才能使其得以广泛应用。目前国内外实际生产中通常采取加 磷(P)的方法,亦称磷变质(细化)处理。含磷变质剂主要包括磷盐或赤磷复 合变质剂及含磷中间合金。其主要存在问题如下: (1)磷盐或赤磷复合变质剂:处理过程中产生大量有害气体,环境污染严重, 效果不稳定,废品率高。 (2) Cu-P 中间合金:熔点高,加入后难熔化;密度大,易沉淀偏析。 基于上述行业背景,本课题组研制开发了一种应用于发动机活塞、压铸合 金熔体变质处理的新型 Al-P 晶种合金
山东大学 2021-04-13
一种流延成型制备金属软磁复合材料的方法
本发明公开了一种流延成型制备金属软磁复合材料的方法。其主要步骤为:1)将钝化剂和溶剂按照钝化剂质量分数为0.1%-5%混合起来得到钝化液,将钝化液和磁性金属粉末按照质量比为0.01-1混合,搅拌,烘干,得到钝化粉;2)将钝化粉和有机溶剂,分散剂,粘结剂,增塑剂混合,搅拌均匀,并经过筛网过滤,除泡,制备得均匀弥散的浆料;3)流延成型;4)干燥,固化处理。本发明的优点是利用流延法制备的金属软磁复合材料具有电阻率高,饱和磁通密度较传统铁氧体高的特点。利用较成熟的流延工艺使薄膜金属软磁复合材料的生产工艺简单化,成本降低,在薄膜电感等电子器件的制备中有广阔的应用前景。
浙江大学 2021-04-11
军民融合-轻质高强镁锂合金及衍生材料
西安交大科研团队研制的新型镁锂合金是目前世界上最轻的金属结构材料。材料成功地应用于“浦江一号”和“高分微纳”两颗卫星。其中,高分辨率微纳卫星几乎整颗都用了该型镁锂合金材料替代铝合金结构材料,大大减轻了自身的结构重量,有效载荷得到显著提高,是镁锂合金在航空航天应用史上的一次重大突破。   由高性能镁锂合金衍生出高性能镁合金(汽车用)、高性能铝镁合金(特种行业)等一系列民用产品。西安交大具备开发系列新型高性能铝、镁合金的能力。
西安交通大学 2021-04-11
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 269 270 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1