高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
交变电场弱化煤泥颗粒间水化斥力促进团聚的方法
本发明公开了一种交变电场弱化煤泥颗粒间水化斥力促进团聚的方法,其特征是:对煤泥水施加交变电场,从而弱化煤泥颗粒间水化斥力以促进煤泥颗粒的团聚。以本发明方法处理煤泥水能够有效降低药剂的耗量及设备的占地面积,降低生产成本,获得的循环水澄清度较高,较好的控制煤泥水外排,绿色环保,减少煤炭资源的流失浪费。
安徽理工大学 2021-04-13
二噁英重金属近零排放的生活垃圾气化及飞灰熔融技术
我国每年城市生活垃圾清运量超过 2 亿吨,且每年增长约 8%-10%,到 2020 年预计可达 2.5 亿吨,中国城市生活垃圾无害化处理能力逐年提高,官方数据显 示 2016 年大中城市生活垃圾无害化率已超过 90%,但我国农村部分,无害化率 仅为 60%。垃圾处理面临占用土地、资源浪费、环境污染等问题。当前我国城市 垃圾处理仍然以填埋为主,但以焚烧技术为代表的能源化利用技术增长很快。该 技术伴随着设备投资高、产生强致癌剧毒物质、重金属污染、工艺优化不足等缺 陷,急需探寻其他方法。该项技术利用气化熔融技术原理,对垃圾进行减容减量 处理,处理后体积减小 90%以上,大大降低填埋场的压力。气化熔融技术真正做 到垃圾的无害化处理,可以做到二噁英、重金属污染物的超低排放,环保性能大 大优于目前的垃圾焚烧技术,消除公众抵触情绪,易于推广。
西安交通大学 2021-04-10
生物质焦油零排放大规模气化生产高品质富氢燃气装备及工艺
通过多年集中攻关,针对性地解决了生物质气化转化效率低、焦油、粉尘污染等问题。开发了较空气气化、 氧气气化等技术具有明显优势的秸秆等氧气—水蒸气联合气化装置及工艺,大幅促进了氢气、碳氢化合物的生成。整个系统实现了高品质富氢燃气大规模生产、余热利用、基于焦油完全转化利用的污染物零排放。目前整套技术已经在研发建设的秸秆处理量 1t/天气化系统上完成调试,正在进行系统大型化、集成化、工程化研究。
扬州大学 2021-04-14
一种酪蛋白凝胶颗粒乳化剂及其制备方法和用途
本发明公开了一种酪蛋白凝胶颗粒乳化剂及其制备方法和用途。本发明中的酪蛋白凝胶颗粒乳化剂是通过向含有酪蛋白或酪蛋白酸盐的溶液中添加京尼平进行交联制得的,交联条件为在体系pH值为6~10.5、温度为10~50℃的条件下交联10~60h。所得交联的蛋白凝胶颗粒表面含有大量的毛刷层结构,能够迅速地吸附到油水界面,可增加油水界面的机械强度,具有更高的乳化效果和乳化稳定性,同时交联的酪蛋白凝胶颗粒可在油水界面完整地存在,不会发生解离,具有较高的界面活性,空间位阻较大,能有效地防止液滴之间的聚集和聚并,可长期稳定水包油型乳状液类食品。
中国农业大学 2021-04-11
粗粒土颗粒破碎机理与统一强度及本构理论
本项目以国家自然科学基金 重点项目、国家杰出青年科学基金项目等为依托,历时十余年研究,建立了粗粒 土颗粒破碎机理与塑性本构理论。主要取得的科学发现点如下:(1) 针对传统强度理论无法描述粗粒土的颗粒破碎、各向异性、尺寸效应 等问题,建立了粗粒土三维统一非线性强度理论。该强度理论能够准确地模拟粗 粒土因颗粒破碎所导致的偏平面及子午面上非线性的强度特征;能够合理地反映 粗粒土因自重产生的横观各向同性的强度特征;能够准确地模拟粗粒土复杂的各 向异性的强度特征;还能够合理地反映粗粒土三维尺寸效应的强度特征。(2) 提出考虑中主应力影响的粗粒土三维边界面本构理论。试验表明,粗 粒土剪胀特性与中主应力系数相关,据此提出了考虑中主应力影响的粗粒土三维 应力-剪胀方程。针对传统本构模型无法描述中主应力对应力变形影响的问题, 建立了考虑中主应力影响的粗粒土三维边界面本构模型。在边界面理论框架下, 建立了屈服面与边界面的演化规律,获得了应力变形特征。(3) 提出颗粒破碎影响的状态相关塑性本构理论。试验发现粗粒土颗粒破 碎会导致颗粒级配发生变化,细颗粒填充粗颗粒孔隙,进而使得临界状态线发生 移动,并伴随能量散耗,因此,提出了考虑颗粒破碎的三维临界状态面及临界状 态理论。粗粒土在压缩和剪切作用下,颗粒破碎,并具有状态相关性,因此,提 出了考虑颗粒破碎的应力-孔隙耦合状态方程。根据所提出的考虑颗粒破碎三维 临界状态面,建立了考虑颗粒破碎影响的状态相关塑性理论。
重庆大学 2021-04-11
粗粒土颗粒破碎机理与统一强度及本构理论
我国粗粒土分布广泛,在强震、高应力等复杂应力条件下,高土石坝、高边 坡和岛礁工程中,粗粒土易产生颗粒破碎,导致其级配发生改变并伴随能量耗散, 从而引起边坡及坝体变形失稳破坏。研究粗粒土在颗粒破碎情况下的本构模型以 及评价工程安全稳定是目前粗粒土研究的热点问题。本项目以国家自然科学基金 重点项目、国家杰出青年科学基金项目等为依托,历时十余年研究,建立了粗粒 土颗粒破碎机理与塑性本构理论。主要取得的科学发现点如下: (1)  针对传统强度理论无法描述粗粒土的颗粒破碎、各向异性、尺寸效应 等问题,建立了粗粒土三维统一非线性强度理论。该强度理论能够准确地模拟粗 粒土因颗粒破碎所导致的偏平面及子午面上非线性的强度特征;能够合理地反映 粗粒土因自重产生的横观各向同性的强度特征;能够准确地模拟粗粒土复杂的各 向异性的强度特征;还能够合理地反映粗粒土三维尺寸效应的强度特征。 (2)  提出考虑中主应力影响的粗粒土三维边界面本构理论。试验表明,粗 粒土剪胀特性与中主应力系数相关,据此提出了考虑中主应力影响的粗粒土三维 应力-剪胀方程。针对传统本构模型无法描述中主应力对应力变形影响的问题, 建立了考虑中主应力影响的粗粒土三维边界面本构模型。在边界面理论框架下, 建立了屈服面与边界面的演化规律,获得了应力变形特征。 (3)  提出颗粒破碎影响的状态相关塑性本构理论。试验发现粗粒土颗粒破 碎会导致颗粒级配发生变化,细颗粒填充粗颗粒孔隙,进而使得临界状态线发生 移动,并伴随能量散耗,因此,提出了考虑颗粒破碎的三维临界状态面及临界状 态理论。粗粒土在压缩和剪切作用下,颗粒破碎,并具有状态相关性,因此,提 出了考虑颗粒破碎的应力-孔隙耦合状态方程。根据所提出的考虑颗粒破碎三维 临界状态面,建立了考虑颗粒破碎影响的状态相关塑性理论。
重庆大学 2021-04-11
采用颗粒冲刷清灰的线管式高温静电除尘装置及清灰方法
本发明公开一种采用颗粒冲刷清灰的线管式高温静电除尘装置及清灰方法,由渐缩管式电除尘器、颗粒冲刷式清灰装置、水冷装置、储料仓、灰斗、分离装置构成。本发明通过给料装置从储料仓向清灰装置颗粒进口输入清灰颗粒,再通过颗粒引导槽输出清灰颗粒,使清灰颗粒沿渐缩收尘极的管壁滚落,颗粒冲刷使收尘极上的积灰层破碎脱落,落入灰斗中,完成清灰的过程,落入灰斗的颗粒通过分离装置与粉尘分离净化。颗粒引导槽使得清灰颗粒落下时分布均匀,收尘极管收尘极壁面的倾斜形成颗粒加速滚落的轨道,不使其从空间中直接坠落,提高颗粒的清灰效率。本发明操作方便、清灰迅速、稳定性好、清灰效率高,且原料可回收,特别适合高温下静电除尘装置的清灰。
浙江大学 2021-04-13
一种基于城镇生活污水纯氧曝气的污泥颗粒化方法
(专利号:ZL 201310365286.9) 简介:本发明公开了一种基于城镇生活污水纯氧曝气的污泥颗粒化方法,属于污水处理技术领域。该方法采用SBR反应器,高径比为10-12.5,排水比为50-70%,纯氧通过反应器底部的扩散器进行曝气,曝气量为0.85-1.54m3/m3·h;反应器内温度为17-23℃,pH值5.5-8.0;反应器运行周期为12h。该方法共分4个阶段进行梯度培养,培养时间短,经过33-40d完成污泥颗粒化。采用本发明
安徽工业大学 2021-01-12
双亲性辛烯基琥珀酸短直链淀粉纳米颗粒及其制备方法
本发明涉及一种双亲性辛烯基琥珀酸短直链淀粉纳米颗粒的制备工艺,步骤如下:(1)用普鲁兰酶酶解糊化淀粉乳,得到短直链淀粉;(2)配制短直链淀粉水溶液,糊化后加入相当于短直链淀粉干粉重25‑100%的辛烯基琥珀酸酐溶液,持续搅拌6‑10h,得到改性辛烯基琥珀酸短直链淀粉溶液;将辛烯基琥珀酸短直链淀粉制成1‑10mg/mL的溶液,37‑40℃下搅拌6‑10h,冷却至室温得到辛烯基琥珀酸短直链淀粉纳米颗粒溶液。本发明纳米颗粒粒径在5‑100nm之间,对组织的附着力强。可以包埋疏水的活性物质,装载率高,成本低,提高胃肠道对疏水活性成分的输送效率,提高其生物利用率。保护疏水活性成分,提高其稳定性,掩蔽不良风味的释放;并有效减少生物活性成分的添加量和毒副作用。
青岛农业大学 2021-04-13
一种新型韧性颗粒强化的铁基非晶基复合涂层
本发明提供一种新型韧性颗粒强化的铁基非晶基复合涂层,以 铁基非晶合金粉末和韧性金属粉末的机械复合粉末为原料,其中铁基 非晶合金粉末由下述元素和不可避免的杂质组成:Cr10.0-17.0; Mo12.0-20.0;B4.0-8.0;C10.0-18.0;Y0.0-5.0;Fe 余量(原子百分比); 韧性金属粉末可以采用:不锈钢粉末、镍基金属粉末、钴基金属粉末、 铝基金属粉末或铜基合金粉末;该涂层采用超音速火焰喷涂技术制得。 本发明获得的铁基非晶基复合涂层结构致密,孔隙率低,具有较高的 韧性以及与金属基材良好的结合强度。该复合涂层水力及油气田开发 设施、管道运输、船舶甲板等诸多工业领域有着极大的应用前景
华中科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 24 25 26
  • ...
  • 29 30 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1