高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
对外经济贸易大学商务部援外高端硕、博项目系列视频课程录制竞争性磋商公告
对外经济贸易大学商务部援外高端硕、博项目系列视频课程录制竞争性磋商
对外经济贸易大学 2022-05-27
稻米糊粉(白糠)高值化利用关键技术及装备集成
稻米糊粉是大米加工过程中的重要副产物,主要包含稻米糊粉层和亚稻米糊粉层,营养价值十分丰富,含有大量的蛋白质、膳食纤维、维生素和矿物质,其营养素含量是精白米的数倍到几十倍不等,是十分优良的食品原料及配料。稳定化加工后价格 0.6-1 万元/吨,开发成产品则利润更高,具有十分可观的经济效益。 但稻米糊粉层中的脂肪酶和过氧化物酶在碾米过程中极易激活,产生脂肪酸败现象,这是限制其商业化应用的主要因素。绝大多数富含糊粉层的米糠未被有效分离,与米糠一起以 0.2 万元/吨左右的低价出售用作饲料,未充分发挥其附加值,是一种巨大的资源浪费。 本项目针对传统稳定化方法处理稻米糊粉层得到产品货架期短、食味品质差、成本高等缺点,通过差异化分级、梯度瞬时灭酶等关键技术的研发,成功解决了稻米糊粉的稳定化问题,并成功挖掘其高值化商业卖点,将其作为功能性配料开发了代餐食品、固体饮料、烘焙以及面制品等系列产品。该项目的研究成果对于提高稻米附加值,促进大米加工企业创利增收,延伸稻米产业链具有重要意义。 
江南大学 2021-04-11
超临界二氧化碳发泡成型技术及装备
超临界二氧化碳(SCCO2)具有安全性高、环保、成本低等突出优点,是氟氯烃类发泡剂最有潜力的替代物。但由于二氧化碳在聚苯乙烯中的溶解度较低,且扩散系数较大,因此难于制备低密度的聚苯乙烯发泡材料。针对二氧化碳发泡剂的特点,在自行研制的超临界CO2挤出发泡试验装置上,通过改变成核剂种类及含量,添加过氧化物控制发泡材料降解,与PMMA共混等改性手段,研究影响发泡材料表观密度的因素,制备出低密度发泡材料。 北京化工大学自行研制的XPS生产线,可针对聚苯乙烯,聚丙烯,聚乳酸,聚酯等进行连续挤出和注塑发泡成型,其中环保型聚苯乙烯保温板生产线已经在国内推广了10余条生产线。该项目是国家十二五科技支撑计划项目,中德合作国际项目以及国家环保部重点支持项目。
北京化工大学 2021-02-01
航空发动机叶片、叶盘阵列加工装备及应用
该成果主要涉及叶片、叶盘阵列加工装备设计方法,同时利用精密数控磨削工艺,在阵列机床上实现双端带冠叶片的高效率加工技术。该成果可以构成完整的航空发动机加工技术体系。其中:1)建立多主轴阵列机床的设计方法,可实现一个工序同步加工叶片零件,提高叶片、叶盘加工效率;2)形成利用圆柱坐标机床三个运动轴实现叶片榫头和型面的全面加工方法,可用于进一步降低阵列机床成本;3)利用环面砂轮实现双端带冠叶片的精密磨削方法,可在阵列机床上一次装夹完成全型面的加工,进一步提高加工效率。 制造过程中,重点解决复杂型面及结构零件加工效率不足的生产难题,同时降低叶片、叶盘的加工成本;建立环面砂轮加工双端带冠叶片全型面的加工方式,避免二次装夹带来的重复定位误差,显著提高加工节拍。该成果的应用将极大地提高了航空发动机叶片的效率和成本,改善了传统铣削加工成本高、效率低、工序繁琐等生产难题。
北京航空航天大学 2021-04-10
大型无机盐结晶器精确调控工程技术与装备
现代结晶技术是无机盐、精细化工品、光电晶体材料、医药、农药、食品添加剂等高端功 能材料的共性科学问题,相关晶体产品是不同行业高端产品中的核心部分,结晶工艺和结晶器 装备开发是结晶技术的重要环节。 华东理工大学资源过程工程研究所具有国际先进水平的结晶过程研究测试仪器与实验装 置:马尔文激光粒度分析仪 (Mastersize 2000) 、颗粒录影显微镜 (PVM) 、聚焦光束反射测量仪 (FBRM) 、平行结晶仪,扫描电子显微镜 (FEI Quanta 250) 、全自动实验室合成反应器 (LabMax) 等,能够对结晶过程进行在线监测和控制、结晶产品的粒度分布、晶体形貌特征进行分析评 价。 研究所还拥有二维激光粒子测速仪PIV以及体三维速度场测试仪V3V,配备相关流体力学 商业软件及自主开发的设计软件系统,能够对结晶器流场进行数值模拟,实现结构与操作参数 的多参数系统优化,开展结晶器设计与工程放大。 研究所建立了一套无机盐大型无机盐结晶器精确调控工程技术与装备的研究方法,通过结 晶过程热力学、结晶过程动力学,结晶工艺优化,结晶装备设计与放大,实现了氯化钾大型结 晶装备的优化、十万吨级反应结晶氢氧化镁等结晶装置成套工艺。 
华东理工大学 2021-04-11
二氧化碳相变页岩气增产技术及装备
页岩气是指赋存于富有机质泥岩及其夹层中,以吸附或游离状态为主要 存在方式的非常规天然气,成分以甲烷为主。近几年来,美国页岩气勘探开发 技术突破,产量快速增长,实现其“天然气革命”,对国际天然气市场及世界能源格局产生重大影响,极大的改写了世界能源格局。但是页岩层岩石具有结构致密、坚硬、超低渗透率等特性,因而页岩气开发非常困难。 目前世界上开发页岩气井初步造缝较为成熟的技术方案是在铺设的水平 油管井中用聚能射孔器作为初步造缝的装置来击穿油管和岩石,形成页岩层岩 石的初步造缝。其原理是用电缆将射孔器送到套管要射孔的部位,由电雷管引爆 射孔子弹。子弹是高效火药压制成聚能的致密锥形体,外包以铜皮。火药爆燃沿 锥形面的中心,瞬间以每秒8000米的高速和2000°C以上高温的喷射流,射穿套 管壁和水泥层,在地层中再穿透300-500毫米。每个射孔枪向四周沿螺旋线装 置多发子弹,每米长度射孔密度不少于15〜20个孔,以保证出油的裸露面 积。高效力的射孔,有时再加上油层的压裂措施,使射孔完井在完井方法中占 主导地位。 二氧化碳相变页岩气增产技术及装备提供一种能够适应各类页岩层、能 够替代聚能射孔弹的页岩气初步造缝装置,是一种基于临界C02相变来对页岩 层岩石初步造缝的电缆射孔器,其射孔器是一种可以调节压力、爆破速度、造 缝能力强、安全可靠的低温射孔器,具有根据不同地区的页岩气层岩石的致密程 度调节岩石欲裂时爆破压力和爆破速度、提高了页岩气层的开采率、安全可靠特点。
重庆大学 2021-04-11
应用于黑灯工厂的数控动柱立式机床智能装备
数控立车切削加工作为制造技术的主要基础工艺,随着制造技术的发展,在 20 世纪末也取得了很大的进步,进入了以发展高速切削、开发新的切削工艺和加工方法、提供成套技术为特征的发展新阶段。是制造业中重要工业领域,如汽车工业、航空航天工业、能源工业、军事工业和新兴的模具工业、电子工业等行业的主要加工技术,也是这些工业领域迅速发展的重要因素。为了满足市场和科学技术发展的需要,达到现代制造技术对数控技术提出的更高的要求,为适应数控进线、联网、普及型个性化、多品种、小批量、柔性化及数控迅速发展的要求,最重要的发展趋势是体系结构的开放性,数控技术、制造过程技术在快速成型、并联机构机床、机器人化机床、多功能机床等整机方面和高速电主轴、直线电机、软件补偿精度等单元技术方面先后有所突破。 黑灯工厂”是 Dark Factory 的直译,即智慧工厂,因为从原材料到最终成品,所有的加工、运输、检测过程均在空无一人的“黑灯工厂”内完成,无需人工操作,所以可以关灯运行,故而得名。智能化才是支撑企业的核心,智慧工厂中员工对智能化设备的掌控能力的要求大大提高,由原来的纯粹单一“操作为主,设备为辅”的角色演变为“设备为主,操作为辅”,需要员工变身为具备全面技术能力的工程师。技术工程师不仅要保证智能化生产线的正常运行,还要保证快速处理生产过程中产生的异常等,而且成为了智慧工厂的“隐形人”,由其在综合考虑效率、成本等因素的基础上决定哪些工作由机器完成,哪些由人完成,实际的生产仍是一个人机协作的过程。基于数字孪生建模、分析、调试、决策和运维等远程管控来实现和保障的。 本项成果的核心是黑灯模式下的动柱式数控机床智能装备及基于云控远程运维平台的加工产线的开发及其产业化,主要是开发中小型数控动柱立式机床智造装备、基于数字孪生驱动的云管控系统及 APP,研制低时延智能控制器并实现产业化。其关键技术是数字孪生驱动的一体化设计、智能控制AI 算法及其控制器和基于物联网的云控远程运维技术。数控机床与智能数字化+物联网+云平台相结合,因此形成的本成果是特有的数字化智能装备(数智装备)。 技术先进性和独占性在于: (1)基于数字孪生的动柱式数控车床的设计制造方法及精密加工自动化流程智能改进技术; (2)基于数字孪生驱动的自感知、自决策、可预测性运维等于一体的黑灯模式智慧工厂的云管控平台及制造服务 APP; (3)全新的基于区域选择性耦合控制的低时延智能控制技术的开发。创新点在于: (1)基于数字孪生模型的动柱式数控机床及其配套生产线的设计制造方法创新; (2)“倒立式五轴车铣中心”实现 5 面车铣复合加工;“动柱式数控立车”技术,X 轴主导轨、X 轴滚动丝杆、X 轴副导轨三者来定位动立柱技术;8-12 工位伺服液压刀塔,加工时换刀快、精度高、故障少; (3)通过内置 K210 智能芯片、SIM8200/8300 和智能传感等核心模块,实现了智能装备间 NB-ioT 和 mMTC 等 5G 物联通讯和人机交互; (4)将多源数控机床运行数据高效融合以及边缘计算与云端一体化,开发制造服务 APP 模块,构建面向制造服务生命周期的云网端管控平台; (5)基于区域选择性控制的低时延智能控制器实现了智能装备之间的网格化耦合控制,结合云网端管控系统及深度学习,构成智能产线。
浙江大学 2021-05-10
航空发动机叶片、叶盘阵列加工装备及应用
该成果主要涉及叶片、叶盘阵列加工装备设计方法,同时利用精密数控磨削工艺,在阵列机床上实现双端带冠叶片的高效率加工技术。该成果可以构成完整的航空发动机加工技术体系。其中:1)建立多主轴阵列机床的设计方法,可实现一个工序同步加工叶片零件,提高叶片、叶盘加工效率;2)形成利用圆柱坐标机床三个运动轴实现叶片榫头和型面的全面加工方法,可用于进一步降低阵列机床成本;3)利用环面砂轮实现双端带冠叶片的精密磨削方法,可在阵列机床上一次装夹完成全型面的加工,进一步提高加工效率。
北京航空航天大学 2021-05-09
复杂装备智能制造中的关键共性技术研究与应用推广
本项目核心技术获中国轻工业联合会科学技术进步奖二等奖。 1、项目简介 本项目所指复杂装备主要为复杂动力机械装备及其关键零部件,如汽轮机、369 压缩机等。 本项目针对复杂装备制造企业技术准备时间长、效率低、制造过程模式自动 化程度低、协调能力差、信息共享度和集成度不高、信息孤岛现象等实际情况, 研发了集数字化设计、制造和智能化监控管理为一体的设计制造管理系统。项目 重点突破了复杂装备智能化制造过程和工艺参数优化、工艺工装设计自动化、数 控机床生产的数字监控管理智能化、基于短距离无线通讯(Zigbee)技术的生产信 息双向传输、自适应在线排产优化等关键技术,为研发设计制造集成管理系统提 供了技术支撑。 2、创新要点 (1)将开放式装配建模技术应用于产品的研发中,创立了模型的 UML 表达 方式、装配体特征、装配配合公差分析和系统的装配层次分析等,完成了产品的 结构设计、零件与装配的联动设计、装配仿真分析,并建立了产品及其关键部件 的数字样机。开放式装配建模方法更有效地指导产品由整体构思到样机设计的整 个过程。 (2)提出了面向数字化预装配的分层干涉检测算法,该方法把干涉检测过 程分为粗检测、半精检测、精确检测三层,通过逐层检测,大大加快了干涉检测 的速度,提高了检测的精确度,有助于预装配中优化装配序列的快速生成。 (3)基于虚拟产品开发管理技术 VPDM,研究并解决了机械装备虚拟数字样 机开发中的数据交叉、耦合和冗余问题; (4)基于工程知识和多视觉特征模型,提出了一种装配优化序列规划方法。 利用直接装配关系图表达产品几何信息、设计信息、制造信息和装配信息等,通 过产品特性和操作环境的评价因素,构建装配先后关系,从可行装配序列中选择 最优装配序列,更好地帮助设计师完成装配设计并做出正确决定。缩短了产品研 发时间,保证产品准时投放市场。 3、效益分析 目成果广泛应用于多家装备制造企业,其中 4 家企业利用该技术提高生产效 率 20%~30%,按时交货率从 63%左右提高到 90%以上。近三年企业总计新增利 润 6.1663 亿元,新增税收 3.3804 亿元,新增销售 28.058 亿元。减少了 80%以 上的生产管理人员 4、推广情况(已推广企业) 本项目成果已在无锡透平叶片有限公司、无锡压缩机股份有限公司、江苏南370 方机电股份有限公司、无锡市安迈工程机械有限公司等生产企业得到成功应用。 授权专利: 1.数控机床刀具的在线管理方法 201010129780.1 2.车间加工设备群加工运行优化的方法 200910031198.9 3.数控机床监控方法 201110430626.2
江南大学 2021-04-11
具有自动送料功能的秸秆压块燃料户用采暖装备
具有自动送料功能的秸秆压块燃料户用采暖装备一、 项目简介在教育部科学技术研究重点项目和河北省科技支撑计划项目的资助下,河北工业大学能源与环境工程学院(暨天津市建筑供能技术工程中心)基于对北方农作物秸秆燃料燃烧特性的研究,开发了具有自动送料功能的秸秆压块燃料户用采暖装备。农作物秸秆的燃烧特性与燃煤显著不同,秸秆燃料的挥发分含量高达70%,固定碳含量仅有15%左右,灰分含量低于10%。秸秆燃烧放热集中于挥发分的气相燃烧过程,而燃煤以固定碳固相燃烧放热为主,因此,套用燃煤炉结构(尤其是配风方面)来设计秸秆压块采暖炉是不可行的。秸秆燃料灰熔点低、富含钠钾等碱金属化合物,采用常规层燃方式易于造成燃料层板结、受热面结渣和碱金属腐蚀,并导致燃烧效率和热效率降低。煤块的燃烧周期长达2小时,而秸秆压块的燃烧周期仅有25分钟,人工添加燃料势必造成炉内燃烧工况波动和污染物排放提高。秸秆燃料低温、缺氧情况下将产生大量焦油,夜间封火将形成焦油污染,并将因烟气中的水蒸气冷凝而形成污水二次污染。本项目所涉及的秸秆压块燃料户用采暖装备匹配了自动送料装置,内置“日间供热”和“夜间供热”两种模式,可实现12小时无人值守,不仅提高了燃烧稳定性、燃烧效率和热效率,同时彻底摆脱了夜间封火工艺,可有效保证用户的夜间室内温度,舒适度大大提高,劳动强度显著降低。二、 项目技术成熟程度具有自动送料功能的秸秆压块燃料户用采暖装备在技术上已经完全成熟,目前已在遵化和张家口分别完成了热负荷10kW(供热面积80-100m2)和15kW(供热面积150-200m2)采暖装备的示范运行工作,其各项污染物排放指标均满足《锅炉大气污染物排放标准》(GB13271-2013)的要求,燃尽灰可直接作为生物肥料还田。户用采暖装备示范样机照片见下文图1。三、 技术指标(包括鉴定、知识产权专利、获奖等情况)本项目所涉及的采暖装备已获得国家发明专利授权1项,另有1项发明专利正处于审查过程中。秸秆压块燃料户用采暖装备示范样机监测结果显示,其各项污染物排放指标均满足《锅炉大气污染物排放标准》(GB13271-2013)的要求,其热效率达到80%以上。四、 市场前景(应用领域、市场分析等)应用领域:具有自动送料功能的秸秆压块燃料户用采暖装备主要适用于北方农村地区农村住房的冬季供暖过程,同时可用于城郊别墅冬季供暖、蔬菜种植大棚的供热、以及养殖建筑的冬季供热。市场分析:2013年,京津冀地区农民生活生产燃煤消耗高达4224万吨/年,占到社会总煤耗量的11%,而农村地区燃煤的污染物排放却占环境统计烟尘排放总量的23.2%、二氧化硫排放总量的15.2%,氮氧化物排放总量的4.4%。上述统计数据说明,燃烧等量的煤炭,农村用能过程较工业燃烧过程对环境污染的贡献率更大。2014年,北京可持续发展促进会针对京津冀农村地区7795个农户的生活用能情况进行了调查,农民的用能以“散煤+电+液化石油气”方式为主,户平均生活能耗折合2.5-3吨标准煤/年,其中,冬季燃煤采暖用能所占比例高于60%、生活用电能耗约占20%、炊事用能约占15%(以秸秆等生物质能和液化石油气为主);并且农户生活用能的85-90%为商品能源,户均能源购置成本3500元/年。上述调查结果说明,污染物排放严重的燃煤燃烧在农村用能过程中占据着主导地位,而农村地区丰富的生物质能并未得到有效利用。近十年来,我国在生物质能的规模化利用(秸秆直燃发电、生物制油制乙醇、秸秆集中气化等)领域,完成了各种类型的示范工程建设。但值得注意的是,由于秸秆收集半径过大、燃料运输成本过高等原因,已建成的数十座秸秆直燃电站并没有彻底改变农村地区秸秆田间焚烧或废弃的现状。目前,农村地区均使用技术水平较低的、未配备除尘脱硫装置的燃煤采暖炉散烧劣质原煤,从技术角度而言,市场上现有的户用燃煤采暖炉根本无法克服周期性的人工添加燃料和夜间封火工艺所造成的燃烧不稳定和燃烧不完全现象,而上述周期性燃烧和不完全燃烧,是造成农村地区燃烧污染物排放严重超标的主要原因。2014年,京津冀三地针对农村地区冬季采暖燃煤排放问题相继出台“推广民用无烟煤炉具”、“控制散烧劣质原煤,强制燃用无烟煤或型煤”、“推广秸秆压块民用采暖炉”等政策,并计划在2017年之前投入数千万元用于补贴农户购置无烟煤炉具或秸秆压块采暖炉。但这不过是一时权宜之策,目前市场上销售的无烟煤炉具和秸秆压块采暖炉,均因缺乏专业设计而无法克服人工加料和夜间封火所造成的燃烧不稳定和燃烧不完全现象,不能从根本上控制燃烧污染物的超标排放;尤其是秸秆压块采暖炉,封火期间的低温燃烧过程将产生大量的碳烟、焦油和冷凝水,室内空气污染异常严重,影响用户的身体健康。河北省年产秸秆6200万吨(全国年产秸秆7亿吨,天津市230万吨),其中能源化利用的仅有74万吨,直接还田和废弃的秸秆折合标准煤2300万吨。但是由于缺少专用的燃烧设备,导致大量秸秆于田间焚烧,能源浪费和大气污染严重 。因此,在农村地区推广以秸秆燃料取代燃煤采暖具有可行性,而技术先进的秸秆压块燃料户用采暖装备在农村地区具有广阔的应用前景,其需求量巨大。五、 规模与投资需求(资金需求、场地规模、人员等需求)北方农村地区冬季供热多采用燃煤采暖炉+土暖气模式,是一种分布式供能系统。由于燃煤采暖炉的技术水平较低,热效率仅有65%左右,故导致其燃料消耗量较高;并且,常规燃煤采暖炉在夜间必须封火,低温、缺氧燃烧不仅降低了室内温度,同时也显著提高了燃烧污染物排放量,并且煤气中毒的可能性增大。目前,农村地区100m2供热面积年消耗燃煤3-5吨,燃煤购置成本3000-5000元/采暖期。利用农村废弃的农作物秸秆、树枝等加工而成秸秆压块燃料取代燃煤用于冬季采暖过程,是符合国家中长期发展战略和京津冀地方政府农村政策的。值得注意的是,秸秆和秸秆压块属于地方燃料,收集和运输半径过大势必提高其燃料成本,因此,建议采用“就地生产、就近利用”的模式,来推广秸秆压块采暖装备和秸秆压块燃料。企业需要以能源供应商的身份介入秸秆压块采暖装备和秸秆压块燃料生产销售过程,以“分户采暖/集中监控”的商业模式运行;需要在农村地区建设辐射半径10公里(1000-2000家左右的用户)的中心服务站,一方面负责秸秆收集以及压块燃料的生成、销售工作,另一方面负责燃烧装备的生成、销售工作,同时还要负责燃烧装备的运行监控、维护及维修服务工作。以服务1000家农户(预计秸秆压块燃料总消耗量5000吨/采暖期)的中心站建设为例,其投资规模为150万元左右,场地规模3000m2左右,人员10-13人(其中专业技术人员和管理人员3-4人,装备生产加工人员3-4人,燃料加工人员4-5人)。投资预算包括:秸秆压块装备购置成本25万元(2台套);燃烧装备加工设备购置成本15万元(年生产能力2000台套);土地购置成本20万,厂房和燃料仓库建设成本30万元、露天储料场建设成本5万元;控制终端设备购置成本10万元;人员工资成本30-40万元/年。等等。六、 生产设备秸秆压块燃料生产需要购置秸秆压块机,生产能力1-1.5吨/小时的秸秆压块机械,目前市场售价12万左右。采暖装备加工需要卷板机、电焊机、磨具等基本机械加工设备。七、 效益分析下文将从用户和能源供应商两方面进行效益分析。1、秸秆压块、燃煤和燃气采暖的经济性分析以采暖面积200平米的民居为例,采暖热指标取70W/m2,若选用NK15.0-IY型户用采暖装备,售价以4000元/台计算;秸秆压块发热量3500-3700kcal/kg,市场售价450-550元/吨。初投资(不包括室内管网)和运行成本见下表:采用秸秆压块采暖装备进行冬季采暖,其初期投资为4210元,运行成本包括秸秆压块购置4140-5160元、自动送料装置和循环水泵电耗180元,折合采暖费用为22-26.5元/平米。若农户自产5吨秸秆,则采暖成本可降低至15元/平米以下。同样供热面积的燃煤采暖炉市场售价1500-2000元/台,其热效率约为65%;燃煤发热量5600kcal/kg,目前市场售价650-800元/吨左右。初投资(不包括室内管网)和运行成本见下表:采用燃煤炉具进行冬季采暖,其初期初投资为1710-2210元,较秸秆压块采暖装备初投资低2000元左右,考虑国家补贴的1500元后,两者相差500元左右。其运行成本包括燃煤购置费用4916-6050元,循环泵电耗50元,折合采暖费用为24.8-30.5元/平米,较秸秆压块全部购置采暖成本高10%左右。但是,采用秸秆压块采暖装备的劳动强度更低、室内舒适度(尤其是夜间)更高,灰渣处理量更少,环保效益更为显著。同样供热面积的燃气壁挂炉市场售价8500-15000元/台,可同时解决采暖和热水供应问题;单户燃气壁挂炉采暖有很大的调节灵活性,使用完全独立,采暖温度以自主调节,采暖时间可自行控制。天然气价格按3元/立方米计算,其运行成本见下表:燃气壁挂炉采暖的初期投资为8500-15000元,其运行成本包括燃气费用9504元,折合采暖费用为47.5元/平米;尽管燃气壁挂炉采暖系统兼具热水供应功能,但如此高的投资成本和运行成本,是普通农户难以接受的。综上所述,对于农户而言,使用秸秆压块采暖装备进行冬季采暖,具有良好的经济性;同时可以降低商品能源的使用,可提高户用供能自给程度到60%以上。2、能源供应商的投资效益本项目推广实施过程中,企业将以能源供应商和服务商角色介入,负责建立辐射半径5-10公里(用户1000家左右,秸秆压块消耗量5000吨/采暖期)的区域中心工作站(投资规模150万元左右),负责采暖装备的生产、销售、日常维护和年度检修,负责秸秆收集、运输以及压块燃料生产、销售和运输,负责区域供热系统的集中监控和运行保障。而农民用户则负责秸秆生产、采暖装备上料(12小时一次)和供热模式切换、以及室内暖气系统日常调节。在这种商业运作模式下,能源价格将主要由秸秆原料价格(150元/吨)、秸秆压块成型成本(150元/吨)、秸秆和压块燃料收集运输成本(50元/吨)、服务成本(50元/吨)和利润(100-150元/吨)等组成。企业每年可通过秸秆压块燃料销售获得利润50-75万。采暖装备的生产与销售也是企业利润的来源之一,单台采暖装备的生产成本可控制在3000元以下,若销售价格为3400-3500元的话,以年销售1000台计算,企业每年可通过采暖装备销售获得利润40-50万。目前各级政府对于大规模利用秸秆燃料进行了补贴,在利用规模高于5000吨/年情况下,国家财政补贴一般为150元/吨,因此,企业每年可获得的财政补贴为75万。值得注意的是,企业只有以能源供应商角色介入,方可达到如此大的销售和利用规模,而以单个农户每年消耗几吨秸秆燃料的模式运作,是无法获得国家补贴的。综上所述,依托本技术建立一个中心服务站每年可获得的利润为90-125万,可获得的国家补贴为75万,一年即可收回投资。因此,对于企业而言,本项目具有良好的经济效益。八、 合作方式专利转让、技术入股均可,面议。九、 项目具体联系人及联系方式(包括电子邮箱)联系人:刘联胜电话:13802036623Email: lane812@163.com
河北工业大学 2021-04-11
首页 上一页 1 2
  • ...
  • 64 65 66
  • ...
  • 78 79 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1